百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

web技术分享|LRU 缓存淘汰算法(lru缓存机制)

cac55 2024-10-11 10:51 33 浏览 0 评论

了解 LRU 之前,我们应该了解一下缓存,大家都知道计算机具有缓存内存,可以临时存储最常用的数据,当缓存数据超过一定大小时,系统会进行回收,以便释放出空间来缓存新的数据,但从系统中检索数据的成本比较高。

缓存要求:

  • 固定大小:缓存需要有一些限制来限制内存使用。
  • 快速访问:缓存插入和查找操作应该很快,最好是 O(1) 时间。
  • 在达到内存限制的情况下替换条目:缓存应该具有有效的算法来在内存已满时驱逐条目

如果提供一个缓存替换算法来辅助管理,按照设定的内存大小,删除最少使用的数据,在系统回收之前主动释放出空间,会使得整个检索过程变得非常快,因此 LRU 缓存淘汰算法就出现了。

LRU 原理与实现

[LRU (Least Recently Used) 缓存淘汰算法](https://baike.baidu.com/item/LRU)提出最近被频繁访问的数据应具备更高的留存,淘汰那些不常被访问的数据,即最近使用的数据很大概率将会再次被使用,抛弃最长时间未被访问的数据,目的是为了方便以后获取数据变得更快,例如 Vuekeep-live 组件就是 LRU 的一种实现。

实现的中心思想拆分为以下几步:

  • 新的数据插入到链表头部。
  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部。
  • 当缓存内存已满时(链表数量已满时),将链表尾部的数据淘汰。

Example

这里使用一个例子来说明 LRU 实现的流程,详细请[参考这里](https://zhuanlan.zhihu.com/p/34989978)。

1. 最开始时,内存空间是空的,因此依次进入A、B、C是没有问题的

2. 当加入D时,就出现了问题,内存空间不够了,因此根据LRU算法,内存空间中A待的时间最为久远,选择A,将其淘汰

3. 当再次引用B时,内存空间中的B又处于活跃状态,而C则变成了内存空间中,近段时间最久未使用的

4. 当再次向内存空间加入E时,这时内存空间又不足了,选择在内存空间中待的最久的C将其淘汰出内存,这时的内存空间存放的对象就是E->B->D

基于双向链表和 HashMap 实现 LRU

常见的 LRU 算法是基于双向链表HashMap 实现的。

双向链表:用于管理缓存数据结点的顺序,新增数据和缓存命中(最近被访问)的数据被放置在 Header 结点,尾部的结点根据内存大小进行淘汰。

HashMap:存储所有结点的数据,当 LRU 缓存命中(进行数据访问)时,进行拦截进行数据置换和删除操作。

双向链表

[双向链表](https://baike.baidu.com/item/%E5%8F%8C%E5%90%91%E9%93%BE%E8%A1%A8/2968731?fr=aladdin)是众多链表中的一种,链表都是采用[链式存储结构](https://baike.baidu.com/item/%E9%93%BE%E5%BC%8F%E5%AD%98%E5%82%A8%E7%BB%93%E6%9E%84),链表中的每一个元素,我们称之为数据结点

每个数据结点都包含一个数据域指针域指针域可以确定结点与结点之间的顺序,通过更新数据结点的指针域的指向可以更新链表的顺序

双向链表的每个数据结点包含一个数据域和两个指针域

  • proir 指向上一个数据结点;
  • data 当前数据结点的数据;
  • next 指向下一个数据结点;

指针域确定链表的顺序,那么双向链表拥有双向指针域,数据结点的之间不在是单一指向,而是双向指向。即 proir 指针域指向上一个数据结点,next 指针域指向下一个数据结点。

同理:

- 单向链表只有一个指针域。

- 循环(环状)链表则是拥有双向指针域,且头部结点的指针域指向尾部结点,尾部结点的指针域指向头部结点。

特殊结点:Header 和 Tailer 结点

链表中还有两个特殊的结点,那就算 Header 结点和 Tailer 结点,分别表示头部结点尾部结点头部结点表示最新的数据或者缓存命中(最近访问过的数据),尾部结点表示长时间未被使用,即将被淘汰的数据节点。

作为算法大家都会关注其时间和空间复杂度 O(n),基于双向链表双向指针域的优势,为了降级时间复杂度,因此为了保证 LRU 新数据和缓存命中的数据都位于链表最前面(Header),缓存淘汰的时候删除最后的结点(Tailer),又要避免数据查找时从头到尾遍历,降低算法的时间复杂度,同时基于双向链表带来的优势,可以改变个别数据结点的指针域从而达到链表数据的更新,如果提供 Header 和 Tailer 结点作为标识的话,可以使用头插法快速增加结点,根据 Tailer 结点也可以在缓存淘汰时快速更新链表的顺序,避免遍历从头到尾遍历,降低算法的时间复杂度。

排序示例

LRU 链表中有 [6,5,4,3,2,1] 6个数据结点,其中 `6` 所在的数据结点为 Header(头部)结点,`1` 所在的数据结点为 Tailer(尾部)结点。如果此时数据 `3` 被访问(缓存命中),`3` 应该被更新至链表头,用数组的思维应该是删除 `3`,但是如果我们利用双向链表双向指针的优势,可以快速的实现链表顺便的更新:

  • `3` 被删除时,`4` 和 `2` 中间没有其他结点,即 `4` 的 `next` 指针域指向 `2` 所在的数据结点;同理,`2` 的 `proir` 指针域指向 `2` 所在的数据结点。

HashMap

至于为什么使用 HashMap,用一句话来概括主要是因为 HashMap 通过 Key 获取速度会快的多,降低算法的时间复杂度。

例如:


  • 我们在 get 缓存的时候从 HashMap 中获取的时候基本上时间复杂度控制在 O(1),如果从链表中一次遍历的话时间复杂度是 O(n)。
  • 我们访问一个已经存在的节点时候,需要将这个节点移动到 header 节点后,这个时候需要在链表中删除这个节点,并重新在 header 后面新增一个节点。这个时候先去 HashMap 中获取这个节点删除节点关系,避免了从链表中遍历,将时间复杂度从 O(N) 减少为 O(1)

由于前端没有 HashMap 的相关 API,我们可以使用 `Object` 或者 `Map` 来代替。

代码实现

现在让我们运用所掌握的数据结构,设计和实现一个,或者参考 [LeeCode 146 题](https://leetcode-cn.com/problems/lru-cache/)。

链表结点 Entry

```typescript

export class Entry<T> {

value: T

key: string | number

next: Entry<T>

prev: Entry<T>

constructor(val: T) {

this.value = val;

}

}

```

双向链表 Double Linked List

主要职责:

  • 管理头部结点和尾部结点
  • 插入新数据时,将新数据移到头部结点
  • 删除数据时,更新删除结点[前后两个结点的指向域](#排序示例)

```typescript

/**

* Simple double linked list. Compared with array, it has O(1) remove operation.

* @constructor

*/

export class LinkedList<T> {

head: Entry<T>

tail: Entry<T>

private _len = 0

/**

* Insert a new value at the tail

*/

insert(val: T): Entry<T> {

const entry = new Entry(val);

this.insertEntry(entry);

return entry;

}

/**

* Insert an entry at the tail

*/

insertEntry(entry: Entry<T>) {

if (!this.head) {

this.head = this.tail = entry;

}

else {

this.tail.next = entry;

entry.prev = this.tail;

entry.next = null;

this.tail = entry;

}

this._len++;

}

/**

* Remove entry.

*/

remove(entry: Entry<T>) {

const prev = entry.prev;

const next = entry.next;

if (prev) {

prev.next = next;

}

else {

// Is head

this.head = next;

}

if (next) {

next.prev = prev;

}

else {

// Is tail

this.tail = prev;

}

entry.next = entry.prev = null;

this._len--;

}

/**

* Get length

*/

len(): number {

return this._len;

}

/**

* Clear list

*/

clear() {

this.head = this.tail = null;

this._len = 0;

}

}

```

LRU 核心算法

主要职责:

  • 将数据添加到链表并更新链表顺序
  • 缓存命中时更新链表的顺序
  • 内存溢出抛弃过时的链表数据

```typescript

/**

* LRU Cache

*/

export default class LRU<T> {

private _list = new LinkedList<T>()

private _maxSize = 10

private _lastRemovedEntry: Entry<T>

private _map: Dictionary<Entry<T>> = {}

constructor(maxSize: number) {

this._maxSize = maxSize;

}

/**

* @return Removed value

*/

put(key: string | number, value: T): T {

const list = this._list;

const map = this._map;

let removed = null;

if (map[key] == null) {

const len = list.len();

// Reuse last removed entry

let entry = this._lastRemovedEntry;

if (len >= this._maxSize && len > 0) {

// Remove the least recently used

const leastUsedEntry = list.head;

list.remove(leastUsedEntry);

delete map[leastUsedEntry.key];

removed = leastUsedEntry.value;

this._lastRemovedEntry = leastUsedEntry;

}

if (entry) {

entry.value = value;

}

else {

entry = new Entry(value);

}

entry.key = key;

list.insertEntry(entry);

map[key] = entry;

}

return removed;

}

get(key: string | number): T {

const entry = this._map[key];

const list = this._list;

if (entry != null) {

// Put the latest used entry in the tail

if (entry !== list.tail) {

list.remove(entry);

list.insertEntry(entry);

}

return entry.value;

}

}

/**

* Clear the cache

*/

clear() {

this._list.clear();

this._map = {};

}

len() {

return this._list.len();

}

}

```

其他 LRU 算法

除了以上常见的 LRU 算法,随着需求的复杂多样,基于 LRU 的思想也衍生出了许多优化算法,例如:

  • LRU-K 算法
  • LRU-Two queues(2Q)算法
  • LRU-Multi queues(MQ)算法
  • [LFU 算法](https://leetcode-cn.com/problems/lfu-cache/)
  • [LRU变种算法](https://blog.csdn.net/u010223431/article/details/105498387)

参考链接

  • [Zrender - LRU](https://github.com/ecomfe/zrender/blob/master/src/core/LRU.ts)
  • [知乎 - 存淘汰算法--LRU算法](https://zhuanlan.zhihu.com/p/34989978)
  • [LRU算法](https://www.cnblogs.com/wyq178/p/9976815.html)
  • [LRU 策略详解和实现](https://leetcode-cn.com/problems/lru-cache/solution/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/)

相关推荐

如何屏蔽色情网站?_怎么能屏蔽网站

一、基础防御:全网DNS劫持阻断1.修改全网DNS服务器推荐DNS:安全DNS:CleanBrowsing(成人内容过滤):185.228.168.168/185.228.169.168Open...

容器、Pod、虚拟机与宿主机网络通信全解:看这一篇就够了

在日常开发与部署过程中,很多人一开始都会有这样的疑惑:容器之间是怎么通信的?容器怎么访问宿主机?宿主机又如何访问容器?Kubernetes中Pod的网络和Docker容器一样吗?容器跨机器是...

Win11专业版找不到共享打印机的问题

有很多深度官网的用户,都是在办公室上班的。而上班就需要使用打印机,但更新win11系统后,却出现同一个办公室里面的打印机都找不到的问题,这该如何处理呢?其实,可能是由于我们并没有打开共享打印机而造成的...

常用电脑快捷键大全,摆脱鼠标依赖,建议收藏

Ctrl+C复制Ctrl+X剪切Ctrl+V粘贴Ctrl+Z撤销Ctrl+Y重做Ctrl+B加粗Ctrl+A全选所有文件Ctrl+S保存Ctrl+N新建Ctrl+O打开Ctrl+E...

Win11实现自动追剧Jellyfin硬解,免NAS复杂操作

大家好,欢迎来到思赞数码。本期将详细介绍如何通过安装和配置Sonarr、Radarr、Prowlarr、qBittorrent和Jellyfin,打造一套自动化的影视管理系统。很多人认为,要实现自动追...

微软Win11安卓子系统WSA 2308.40000.3.0更新推送下载

IT之家9月21日消息,微软官方博客今日宣布,已面向所有WindowsInsider用户推送了Windows11安卓子系统的2308.40000.3.0版本更新。本次更新和之前...

路由器总掉线 一个命令就能猜出八九分

明明网络强度满格或有线图标正常,但视频卡成PPT、网页刷不开、游戏动不了,闲心这些问题很多小伙伴都碰到过。每次都要开关路由、宽带/光猫、插拔网线……一通忙。有没有啥办法能快速确定故障到底在哪儿,方便处...

windows电脑如何修改hosts文件?_windows怎么修改hosts

先来简单说下电脑host的作用hosts文件的作用:hosts文件是一个用于储存计算机网络中各节点信息的计算机文件;作用是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中...

win10广告弹窗ShellExperienceHost.exe

win10右下角老是弹出广告弹窗,排查为以下程序引起,但是这个是系统菜单的程序不能动:C:\Windows\SystemApps\ShellExperienceHost_cw5n1h2txyewy\S...

Win10 Mobile预览版10512/10166越狱解锁部署已被黑客攻破

看起来统一的WindowsPhone和Windows越加吸引人们的关注,特别是黑客们的好奇心。XDA论坛宣称,在Win10Mobile预览版10512/10166上,已取得越狱/解锁部署突破,比如可...

6款冷门小众软件,都是宝藏,建议收藏

真的很不错(。-ω-)zzzBearhttps://bear.app/cn/Bear是一个漂亮,灵活的Markdown的写作工具。它一样只支持苹果家的全平台。它一出现就惊艳四方,就被AppSto...

如何让不符合条件的设备升级Windows 11

如果你是最近(6月24日之后)加入WindowsInsider项目并且你的设备并不符合升级条件,那么当你在尝试升级Windows11的时候可能会看到以下错误:你的PC不符合Wi...

windows host文件怎么恢复?局域网访问全靠这些!

windowshost文件怎么恢复?windowshost文件是常用网址域名及其相应IP地址建立一个关联文件,通过这个host文件配置域名和IP的映射关系,以提高域名解析的速度,方便局域网用户使用...

Mac Hosts管理工具---SwitchHosts

switchhosts!formac是一款帮助用户快速切换hosts文件的工具,switchhosts!formac能够帮助你快速方便的打造个人专用的网络环境,支持本地和在线两种方式,并且支持...

「浅谈趣说网络知识」 第十二弹 老而不死的Hosts,它还很有用

【浅谈趣说网络知识】第十二弹老而不死的Hosts,它还很有用什么时候才觉得自己真的老了,不是35岁以上的数字,不是头上的点点白发,而是不知觉中的怀旧。风口上的IT界讲的就是"长江后浪推前浪...

取消回复欢迎 发表评论: