百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 在线推荐 > 正文

Painted Skin (2008) - IMDb

cac55 2025-11-03 18:37 4 浏览

趁着还有时间,不如看这6部电影学学艺术史

多模态RAG将是年AI应用架构发展的一个重要趋势,在前面的一篇文章里提到llama-index在这方面的尝试《利用GPT4-V及llama-index构建多模态RAG应用》,本文[1]中将以另一主流框架langchain为例介绍多模态RAG的实现。

大体流程:

1)使用多模态embedding(如 CLIP)处理图像和文本
2)对于图像和文本均使用向量检索
3)将原始图像和文本块传递给多模态 LLM(GPT4-V)进行答案合成

具体实现:

  1. 安装依赖。
! pip install pdf2image
! pip install pytesseract
! apt install poppler-utils
! apt install tesseract-ocr
#
! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)
#
# lock to  due to a persistent bug in more recent versions
! pip install &#;unstructured[all-docs]==&#; pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch

2.下载数据(测试文档点阅读原文查看)。

import os
import shutil
#os.mkdir(&#;Data&#;)
! wget &#;https://www.getty.edu/publications/resources/virtuallibrary/.pdf&#;

3.提取图像并保存在所需路径中

path = &#;/content/Data/&#;
#
file_name = os.listdir(path)

4.使用 Unstructured 中的 partition_pdf 方法提取文本和图像。

# Extract images, tables, and chunk text
from unstructured.partition.pdf import partition_pdf


raw_pdf_elements = partition_pdf(
    filename=path + file_name[0],
    extract_images_in_pdf=True,
    infer_table_structure=True,
    chunking_strategy=&#;by_title&#;,
    max_characters=,
    new_after_n_chars=,
    combine_text_under_n_chars=,
    image_output_dir_path=path,

5.按类型对文本元素进行分类

tables = []
texts = []
for element in raw_pdf_elements:
    if &#;unstructured.documents.elements.Table&#; in str(type(element)):
        tables.append(str(element))
    elif &#;unstructured.documents.elements.CompositeElement&#; in str(type(element)):
        texts.append(str(element))
#
print(len(tables)
print(len(texts))


#### Response

6.图像存储在文件路径

from PIL import Image
Image.open(&#;/content/data/figure-.jpg&#;)

7.对文档进行多模态embedding入库(图片及文字)。

在这里,使用了 OpenClip 多模态embedding。为了获得更好的性能,使用了更大的模型(在
langchain_experimental.open_clip.py 中设置)。

model_name = &#;ViT-g-&#; checkpoint = &#;laion2b_s34b_b88k&#;

import os
import uuid


import chromadb
import numpy as np
from langchain.vectorstores import Chroma
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from PIL import Image as _PILImage


# Create chroma
vectorstore = Chroma(
    collection_name=&#;mm_rag_clip_photos&#;, embedding_function=OpenCLIPEmbeddings()
)


# Get image URIs with .jpg extension only
image_uris = sorted(
    [
        os.path.join(path, image_name)
        for image_name in os.listdir(path)
        if image_name.endswith(&#;.jpg&#;)
    ]
)


# Add images
vectorstore.add_images(uris=image_uris)


# Add documents
vectorstore.add_texts(texts=texts)


# Make retriever
retriever = vectorstore.as_retriever()

8.检索增强生成

上面的vectorstore.add_images 方法将以 base64 编码字符串的形式存储/检索图像,然后将这些信息传递给 GPT-4V。

import base64
import io
from io import BytesIO


import numpy as np
from PIL import Image




def resize_base64_image(base64_string, size=(, )):
    &#;&#;&#;
    Resize an image encoded as a Base64 string.


    Args:
    base64_string (str): Base64 string of the original image.
    size (tuple): Desired size of the image as (width, height).


    Returns:
    str: Base64 string of the resized image.
    &#;&#;&#;
    # Decode the Base64 string
    img_data = base64.b64decode(base64_string)
    img = Image.open(io.BytesIO(img_data))


    # Resize the image
    resized_img = img.resize(size, Image.LANCZOS)


    # Save the resized image to a bytes buffer
    buffered = io.BytesIO()
    resized_img.save(buffered, format=img.format)


    # Encode the resized image to Base64
    return base64.b64encode(buffered.getvalue()).decode(&#;utf-8&#;)




def is_base64(s):
    &#;&#;&#;Check if a string is Base64 encoded&#;&#;&#;
    try:
        return base64.b64encode(base64.b64decode(s)) == s.encode()
    except Exception:
        return False




def split_image_text_types(docs):
    &#;&#;&#;Split numpy array images and texts&#;&#;&#;
    images = []
    text = []
    for doc in docs:
        doc = doc.page_content  # Extract Document contents
        if is_base64(doc):
            # Resize image to avoid OAI server error
            images.append(
                resize_base64_image(doc, size=(, ))
            )  # base64 encoded str
        else:
            text.append(doc)
    return {&#;images&#;: images, &#;texts&#;: text}

使用 RunnableParallel 对输入进行格式化,同时为 ChatPromptTemplates 添加图像支持。

from operator import itemgetter


from langchain.chat_models import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough,RunnableParallel




def prompt_func(data_dict):
    # Joining the context texts into a single string
    formatted_texts = &#;\n&#;.join(data_dict[&#;context&#;][&#;texts&#;])
    messages = []


    # Adding image(s) to the messages if present
    if data_dict[&#;context&#;][&#;images&#;]:
        image_message = {
            &#;type&#;: &#;image_url&#;,
            &#;image_url&#;: {
                &#;url&#;: f&#;data:image/jpeg;base64,{data_dict[&#;context&#;][&#;images&#;][0]}&#;
            },
        }
        messages.append(image_message)


    # Adding the text message for analysis
    text_message = {
        &#;type&#;: &#;text&#;,
        &#;text&#;: (
            &#;As an expert art critic and historian, your task is to analyze and interpret images, &#;
            &#;considering their historical and cultural significance. Alongside the images, you will be &#;
            &#;provided with related text to offer context. Both will be retrieved from a vectorstore based &#;
            &#;on user-input keywords. Please use your extensive knowledge and analytical skills to provide a &#;
            &#;comprehensive summary that includes:\n&#;
            &#;- A detailed description of the visual elements in the image.\n&#;
            &#;- The historical and cultural context of the image.\n&#;
            &#;- An interpretation of the image&#;s symbolism and meaning.\n&#;
            &#;- Connections between the image and the related text.\n\n&#;
            f&#;User-provided keywords: {data_dict[&#;question&#;]}\n\n&#;
            &#;Text and / or tables:\n&#;
            f&#;{formatted_texts}&#;
        ),
    }
    messages.append(text_message)


    return [HumanMessage(content=messages)]

利用LCEL 构造RAG chain

from google.colab import userdata




openai_api_key = userdata.get(&#;OPENAI_API_KEY&#;)


model = ChatOpenAI(temperature=0,
                   openai_api_key=openai_api_key,
                   model=&#;gpt-4-vision-preview&#;,
                   max_tokens=)


# RAG pipeline
chain = (
    {
        &#;context&#;: retriever | RunnableLambda(split_image_text_types),
        &#;question&#;: RunnablePassthrough(),
    }
    | RunnableParallel({&#;response&#;:prompt_func| model| StrOutputParser(),
                      &#;context&#;: itemgetter(&#;context&#;),})
)

测试验证:

q1:

response = chain.invoke(&#;hunting on the lagoon&#;)
#
print(response[&#;response&#;])
print(response[&#;context&#;])


############# RESPONSE ###############
The image depicts a serene scene of a lagoon with several groups of people engaged in bird hunting. The visual elements include calm waters, boats with hunters wearing red and white clothing, and birds both in flight and used as decoys. The hunters appear to be using long poles, possibly to navigate through the shallow waters or to assist in the hunting process. In the background, there are simple straw huts, suggesting temporary shelters for the hunters. The sky is painted with soft clouds, and the overall color palette is muted, with the reds of the hunters&#; clothing standing out against the blues and greens of the landscape.


The historical and cultural context of this image is rooted in the Italian Renaissance, specifically in Venice during the late 15th to early 16th century. Vittore Carpaccio, the artist, was known for his genre paintings, which depicted scenes from everyday life with great detail and realism. This painting, &#;Hunting on the Lagoon,&#; is a testament to Carpaccio&#;
s keen observation of his environment and the activities of his contemporaries. The inclusion of diverse figures, such as some black individuals, reflects the cosmopolitan nature of Venetian society at the time.


Interpreting the symbolism and meaning of the image, one might consider the lagoon as a symbol of Venice itself—a city intertwined with water, where the boundary between land and sea is often blurred. The act of hunting could represent the human endeavor to harness and interact with nature, a common theme during the Renaissance as people sought to understand and depict the natural world with increasing accuracy. The presence of decoys suggests themes of illusion and reality, which were also explored in Renaissance art.


The connection between the image and the related text is clear. The text provides valuable insights into the painting&#;s background, such as its use as a window cover, which adds a layer of functionality and interactivity to the artwork. The trompe l&#;oeil on the back with the illusionistic cornice and the real hinge further emphasizes the artist&#;s interest in creating a sense of depth and reality. The mention of the lily blossom at the bottom indicates that the painting may have been altered from its original form, which could have included more symbolic elements or been part of a larger composition.


The text also notes that Carpaccio was famous as a landscape painter, which aligns with the detailed and atmospheric depiction of the lagoon setting. The discovery of the painting only a few years ago suggests that there is still much to learn about Carpaccio&#;
s work and the nuances of this particular piece. The lack of complete understanding of the subject matter invites further research and interpretation, allowing viewers to ponder the daily life and environment of Renaissance Venice.




{&#;images&#;: [&#;/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k=&#;],
 &#;texts&#;: [&#;VITTORE  CARPACCIO Venetian, // Hunting  on the  Lagoon oil on panel, .9x63.7cm 6 Carpaccio  is considered to be the first great genre painter of the Italian Renaissance, and it is ob- vious that he was a careful observer of his surroundings. The  subject of this unusual painting is not yet completely understood, but it apparently depicts groups of Venetians, including some blacks, hunting for birds on the Venetian lagoon. Some birds standing upright in the boats must be decoys. In the background are huts built of straw, which the hunters must have used as temporary lodging. The  back of the painting shows an illusionistic cornice with some letters and memoranda—still legible—fastened  to the wall. The presence of a real hinge on the back indicates the painting was used as a door to a cupboard or more probably a window cover. It is therefore possible that one had the illusion of looking into the lagoon when the window was shuttered. The presence of a lily blossom at the bottom implies that the painting has been cut down; originally it may have shown the lily in a vase or it may have been cut from  a still larger painting in which our fragment was only the background. Reperse:  Trompe  l&#;Oeil  &#;,
  &#;3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its&#;,
  &#;\n\npersonality and artistic interests, but he was most famous as a landscape painter.&#;]}
print(response[&#;context&#;][&#;images&#;])
####### RESPONSE ##################
[&#;/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1eOe6JwZpD6HcaJLuZDtM8h+jVKOQBg5qncIFlZgwyeormTaESfa52GFlk/76NRvdTIrP58hA/wBs01G+YECke38xWw2M9jRJXBOxVOp3D7h5rjPH3jxVaWe8ONk8+P8AfJqUWMwbAQ1ftLMqpLAc/pQr9BPzM2KW/Y/enP8AwI1JJdXS4VnlHHcmtcoyDAIP1pY4yW5OfqKbTYJ2MmCS9kcANMR67jirgW6/56MR/vmtMR/Llv0qMxqFJ7VPKVdlRbe4YgtOV9txNPEL5wJ3P40r4J4YkCpY1WOESMevGMUWSFdsjC/NgSEnvzSFyWKpJnHvTCFjkdySqkcbjVLzBlijflU81irFws+eS2PbNILmEHa0vOemarQXTBGcsxUdRisndukYhSFyetV7RdCXE6TK8HccH3p4AYZB/WucBIAAc+3PStK0uBFGqOxyefpVe0RPKzSXKtk5x2qTIPBH51TW7TOOvuDVuM5UMDkdqaaYNNClD2zj2pQT3HHvUiuvfrRIRj5QKNw2IzIApbPAqvJcblAUmpCd4ZcjJHUGqE2y3xvkAB6Y60mmFx88jC2ySQd1NjlwoNPQxXMZTd17kVE1pIn3WVl+uKlpphdNBJMSeTUcLhZc80iozNtGKtLZADPJbFRa49iRXB6U5cEdajjgcDlD+NSrEc8gj6iqQhwweBW9Gf3Sf7orEiQLkd6248eWv0FawHAwFbOTz71DJbbiz7iB3q8wQLgHiq5kBbG7ArNO5UtCvFGcZAOPXFWNgUDkk+lO3Z4z+dB6jJ59qNUGjK1xKFXarAHvzVUXEoOA2asS2OXJD4zyRUK2mQfm9qave4n2Jop2Y9s1ejDEZ6D1qpFbIg4GWPfHSrynCbQOlVcLEy/d4HSo7gZxtqZJVbEfAwtRuN4Y5AFQ31KtpYrQwrISZBgL0FLJdRKPKXkg1CJlWT5+VXpz1qo/7yUsowD0FZykylHQk1FkmZXB+YjGKzmZoJCxUZx0NMvrgxSCIKdy9SaiVml5Zhk1LV9QvbQZ50iufLkZQeuKsBo0QZZd2OahWHc3FSNEqJuccelTGNhtjkCOwP8AB6jmp/MRmwF244BNZ4uZAcIqge9XYW85c/LnoRVezaQudNlpLaUOuBuU8lh0rRTcq8j5cVnW8s0cgLtlemKtRH96SzMwbkc9K0jIiSZYXcx+UD8TU+0lMcU4BCOAfwp+BnlsZ7GrbJUSlIvkgY5PtVO4sZbh1dPn4x05Fa7xq5we1CRhThTQHKZcFqYATJwewq4lukqclsH3q00KPyy596eiKgAUYFDbDlRQTSo1bId6lFkoP35PpmrpVj06Uu0496S0G4lQW4A+8+PrThGB0qyQepph4HFNisQbK1EACKOOlUMDNX1xsXjtVU9ykYR5BGDUQUZJPGan2kdz0pmxhznr2qEwkriKORjJHuakZlXk4x6UgRgMflxSmIE8jn1xRe4tUKQjn0NQkqCQi59zUpjBHqB61L9m+VSMcjsKadh2bG2ykoXYdOBxTjywZuBSeTKBtWTaMZPFRNG/QTvx14FDeo0mVbpnM2EPFLb3EgGxhuHck0XFsx3KZZGBxzmqsNjEZgC0vr941LSHqJc3USSlQB9etNhv40cYBOevSq13BGk7AblXsCeaghto3k46jnk1KimJyaHTwlpWdjuLc8mpIoljh34G4noTT1MattOG/GpriFDGsgZVUDOM0prTQI76lRY8EneFB70ySTMBjDc564qJwSSVyfqahcukm18H8KUQkxpU9c1YtODkkhqdGEcDIwan8gIOuD6+la82hmoO5Yjnxw2fbFT/ANoSqwCBAB2xWUxZWOT361uW7BIU4XJGfugVndGvKy5HdkRqWXBIzVRt7zl8nBPHNTyuHj3sPm7AU2LJX5gKXNcfKTRmVyuHzg/nTrm7FuwDIct0xSxc8imX1vLKiGPB9apyuLlHm+Vog0eD6jPSpbS488NvXke9ZEUbWz5dQQfpWpazB2CeWFHbFMSLwJJFBwOtHlj1prvGjKrOAzdATyaOZpDsKTxULsI8BpAMngE9aY88vnNEkIPy5DFup9MdRSi381UedF3jnHXb+NTzNvQfKh4+YjFX1HyjntVIIFq4p+UfSt6W5NjIVc9acFXOMc0pyqggUihj781gpGjiOwOhPNKq7jyKXHHpSqpGO5p3Cw7YAenFDtgZ7CgZ702QFxjODRcdip9pdpSQAUz+dKrF2IAxmpfIXdgDmlEe0+4qbhYY8XyFd5B+lVfs7GTJlcAenU1pEowx3phVRzkU73FymJPYq0jBVdvcmqi26q4zGcfjXTqFAFVblHXmJQQeuBzSuHKYccOX+WMk9qml3mIxtCOR2PNX0hcnkYH0qKW2cMeOB3qG2NRRlJEVOCpJoktfOOdoBAxVpoSGznGKcIHwShJY+gqlLSxLiZgVo/oKftnlUbMn2q4bG5YjKN9RVyDT9o3FWBHPWndIlRZlR6ddMwMq+UmfvN/hVyeSVJwC+6MDAK1oTEyKo2EYqSK03wAMmRnNZylroaKJXR1aPc7AD3NPj+zOvEp5pbsLMnkrGUKnqO9LaWRh+aQ5HYUcyHysdFHIchXIX1p6T+WpQndn3qSR3jUsF+UdgM1VSVrqDdHGYs5wWXBB+lL2gOAsgtwSzuB9W4pyTpCytErSknGF4xT1g/cqkxWU9ye5qYMiD7qgD2rTmuRyk5cOVPmkY6gd6bLOFZQiCRicE5+6KhVo7yBlTOw8Ejj/AOvViCIQxrGo4UYyTk0OSGkxYoYo5XlVR5kn3m7mpDnNHOeDilwe2KE0OwbTnnmrK/dHHaq3Pc1YUnaPpXRSe5D0M0hhk54pqqcnBwc+lObBOAeaauATknrXEpWNrAZUTPmsqN7nr9KlVgQCOlUbu0W5JfzGVwQyHP3cVcEi4AG3PfHalGbu7jcVYmwCKjMefakVx0JAx3pHnQYO5frnFVzoVh4Tk+lLsBOSKo3upw2EO+Vx04VeSa5/T/FtxNdSPcQYtCSF2D5l+vrSdRFKDep1xiGc4zSqoK9KrRalayoHSdCp6HNVrzV4oUZY5FMuMgE8fjU+1itQUJM0VYbypXkc4p4bjAUV5n/bM8esPexTt5mSvJyrDvkehrrLfxTZy2TzH5ZkXLQk859vUU1U0G6bRu4GelNdN3AUYriT4q1ZLhWxEYwclNo+Yeme1dZZataX1sJ45AOzITyp9DRzp6g4NFW4tSkowCQav28QVBkY/CpDJG2OVOPfpS+bGR8rj86nmXcmxIMD0NL61Xa6iRdzyIq56k4pj6jZoQGuoAfeQVSncLFnYCOgwaUIACMcVnf27pu7H2qM844zimzeItPhXPnBvQLQncT0LUdkTK7TSFwTlR0x7VZkCKm5yAo7ntXNXPiyIqRblU7bmIJ/KseXV1nLeZcmTnkFs4p8tkQ6h1s2s6fbgBpd577BuxSprGmydJ1H+8CK4l5EP/LVV/GkWaJsgygn0zVWRn7SXY9Bjkt5k3xujr6g8UxihkH7yMR4wV7k/WuHSVFHyyAfjSGaMZYz8jqQelJxv1H7V9j0NERBhVA+lLxXBjXZoU2m9OAM8kdPrVmPxVLGqs00brjvjJpWKU/I7PgUuRjriuUfxpaoo3IN55xvGKoT+MYpvlS4WHuQvWhNlNo7rg96nGMCvOv+EpAXJ1Aqo/MfpXfWcnm2UEg+YPGrbvXI611UL3ZnJ36HhknjbVobh2S446YIyMCkfx5rDgDzo1A9E61zcxzIw689agwp6HgUvYU+xtzyOjHjDVsuVvWG7qMDFRf8JTqxzi/lGVweawQqBsnJz2zVlJbZEO6Ek467qr2NP+UpTl3NKXxNqrlC+oXB2nI+foa0dMuDc7HvdUlZZD8lurtlj7kD+VXdP8OwXSgpYxSqUDH5z/jVPUdLktNesxBavHCjIQApwvzc1zudKXuxVvuNLSjq2W7jVvOkCxGUwp8oTacZHrnrQL+F0Xa00QU/wRnmi30+7kaXy4chpGYc9iTirMOgXxiYeWvVm5b1rB+zWlzZXsW9Jv7W4XzYftMw5G5YjtyPXP8AOpNQnm8mQuwjLKVizgbmx0rnTbapounR28byJK0xLmE5BU9jVy5lZ7yO0eRmSaDCFjna+ciodGPPzReglN8tnuZp1KKGKCTD4ddrjHIYGpF1e3klUKkwBIxkAY/HNVUije7UTDgkvt9G71fFpHIcJbMeP4UJrqaguhCcmCatNeBkjt4/k+87cH26UyWW9jtpmUpnbnam7d+GKdb6bfwO5gspC0jtkSKQNoxt/matppmqy/LMkcaMeduQ2PY54rOXJF9LFRbasYEd94g2EK9/jt8rUK/iJiGKal6Z2P0rcvrA2pVYDLIpX5mecjac/Wq8V3cwg4vVj/2UkZjWqnFq8Yojlltcr3MbpbSAy3VzMBxvYgA+y9fzrBku7lcB2kB9CSMV3WhRzXniK2eSKXaZgTMy4B45/GugTT5L7U7m2ubRPKTOPMjyAP4Tnvmh1eTeNyWr7Ox5It5OQ2J5B/wI0z7ZM3CyOSB3Y16Lrnh7SbRW82zhQ43boyRXGSyaYHIgtJMDg5Y1rTrRntFkOEluzOW6lxnec/Wj7RJjbvb86kdDM/7q2YDPAUE1Kmm3zqStlPtHUmMgVt7vUz17lYT3GMCQgH3o8+UH/WsPoam/s6/JwbWQD3XHWpxoOqkFjYyhfVlxReC3aJfMVo7m4H/LZ8H/AGqVriY5zI+D6tWxb+EdSlVXZoYlIyMtuz+VXf8AhCbgpj7Wmf8AcrF4iinZsrkm1ocxvc/xE/jSeY/I3H8635PB2pRn91LDIPqRTB4Q1c9fJGevz1Sr0X9pEuE+xjBmAByc0jSn1Oa6W28FXJwJ51Hsoya0m8FqsWYonlcDjeetZvFUU9Hcfspvc4lZXycE19F6K2dC085/5do//QRXhN3ompxyvH9iYAcfIBivddG3Joeno6kMttGCD2O0VvGUZaoyaaep4mPD2l2/mSXmpiTyvmaKHAY84wM0DT9Km3sILku2Qu2M4Poa1ZNJ1CxuWghXTRkZXdgPx3+8avW8OuRQLGt5pCKgxghmP864JVGt5fidqiuiMBbPTrRQZLBnbP8Ay0jzn2rWsGsUQF9FEbYJeQxgKgHU9+lTzaXqF5NBLc6rp26I5ASE46g+tTXWjXl2qLPr0DIucqlsADn6Dms3KEvil+LLs1tElsvENwZpIo9OfZIwWHCqgUdMt6+tY0Oo3txeI13E8zL/ABZAyM+9a39gF02TeIbkrt2kKgUEVB/wi2nl0Vr24mQYzvc8gHP880lKiuoWnfYijll+0/urElyMFRNuLDJ61pR3upxkBdOHpzITWhp6WmnxGOKRUQHhViA/UCrRv7fYy+a2TkDrWcnBle+uhhyx39w+/wDs2FXPVi5H9aFstTB4jgTIPHWrRuHWCE5+ZXwc/wB3NXJ7mLckinG1CDx0pNpBefYyxpuokBvMgQnqUjBqT+zb8gBr91HQ7QBVHVvEDWd9Akc8SxBh5wI3EL6e3rWrHeNNEHhbcp5BxwactEpOw+WpbYpjw6biVVe8uXfv+9xVtPBkHJkDkHnmY/0qe1uUimW4JLE9Rj1FX/7bhLkNG3FONVdyHCp2M3/hF7GHbttFck/3S38zV+HRIowAlvHH+Q/lTj4itVkVfJfHOelSP4hgCkpDJkeuBVe0h1ZPs6nYjW0FvdgkDKsCDWttAmkOeoGOPrWJcatBJJuEMobjPIrQsNQS+up49hTy40PPuT/hRGUW7JilTmldokntoZeZEQk8cjNZJ8OIXJUIM+xqxq14qyvb7nR4wkqOmDg5PUHrSnWoQhzau3HIBrOUoJ+8y4wqWvFDE0Bk6SgDrwDUFx4QiupPMa7uI2P/ADxcqD+HercniGNfvQSZPbcKUa8Gj3C2b8//AK1L2lKOqYezrPdGZL4LYRoF1e8wo24YI3HTHTpQPDN7GiqmuPhRgZt0NXD4jyBm0+Y/7VOGtMzH/R8cZzniqliIf0gVCp2DS9BNkuLm6+1Lj5QUC4/AVrLa24yBEuAPSsk63KIywSPgfxNXI6p4j1rULi4tYGaGCM4aSFTyMd2/wp03Gq9BSpzitTqtT1zQbBD9oAeXnEKD5vx9PxrnIPFJuNVjEOlolsw2Z+ZyvuccVQ8PeD7rUmS5vt0cLfNt/ib/AAr0Sy0e0sYkWGIKF7Dj/wDWa0nGCTildkp21ZkLf3GCRDDj/dIP86sf2pcxInyI/TqDmtc20ZbkHP1qhrkc8Oi3LWJ23IUbGPbJH61ywpyv8RpKcX9k57U9YtbaRvNjG8gfIrc5J9K9AsmWSxt3RvkaJSueuMV5XaaCnzzalKXnfkdSAfUnua9UslVbC3XapxEoyPpXoYRQTai7nPXvpdWPJLPw4Fuorj7VK7sQ2VXjBO3qevWuih0dZVkXdJ8jlCTjk/5NaxtkhnsbaNVYKrFi3UKCCP8Ax7FWndLQKShIlmC8di3f6cVzyjzv3jb2jj8JkJoaDjL59cirKaOgGMv/AN9VqMwCFmwoAycelRWDPJZRSSPudxv+gJyB+WKPYxJ9tLuZtzYW1lbS3FxJ5UKDLMzcCsDRb5Nf1KcWVtcCzi4aWT5cH0x3Pf2FdpdRLcQNG2OejYB2n1Ge/vWPoMEdrqGrWcYCwRSxmNOygrz+eKapwSatqNVJPW5KNKjIGN3HqaT+x1ZuY2yOhzW0EyOAKcwxyCKI0I7sl15dDFGioR8ynntuqC4sreM+SFeSdlysatyff6e9a080n+rjXaT1dhwPp6n9K57xVfTaLpkUlrDveSTD3LnPlHsWPvyPSqVGLdkHtZ9zkvEOkxWz3RZIvPkVZFk2sCxBAI5+o459vSu7ttEQQIrLtO0ZAY4HHavN9Z8VDV2iLyQb4lZV255JwPu9e3H1ru9AudZXS4ri8jUFh/qgCcD1K9QT7dPSta1O8VzF88krI1BoMG0LtGB2yaVfD9oDzGp+pNXLS6+1RllQgjvnIP0P+TVoDA5HNYqmkQ6su5kf2Bbbvlgj+uKeNCt9/McefpWuh5IwfagsN3I6Vfs0R7WXcoDR4QOET8qkh063ikZvJj3EAZ2irZcZxmjI3dc8d6XKlsPnb3Mu506Ka4dlijDeWAMrxnJ5rG0ZJTKtpqRt5JZlaS3lT5fMUHBBXHBH6iugvllO14ZSgHEm1ctt9vesTWrCFLcazCXa5tnUxsCSX5Bx+XGB60kk20yk9DYGlQY+4n4inDToFXAjT8qtI+9Q2CAwBweopScj1qHEFM5zWr3TdFEZuYxvkztUKTk9vzOBVTwrLdanBc3F39kMO/aiImDGw6qfXqOe9ReMZri40+/WC3E0SxKhk8zAjO4MSMcnoKzvhneXDx6jZTxqyI6zCdW6lh0x7ba09mvZOS3Dm1Ok126g0a1jmMKHcwG7YCOOSMfTNaVpa2t1befEyvDMu5CB8pBHFcr44he/tylu5Y2yGVwGG1R33d+nQVJ8PdWeaxl0qbcXtcOj9QUY9PwNCpp0+YctFdHXsJLWBBbwiTGAy7sHHqPU1xWoa1PpGuf2lFPNLZu4SS3nyNoOCcDPGO1d3nB61laxplhqarDcgCZzmNguWJHb3H1pLR6ipzSvfqa8ckcyB0dXU9CpyKbcwrPbSRMuVYYxXCeGdZmsdXuLe53LYTudrk/LHJ/QHp6ZFd2JA2CCDn3ocUFSEqcuVnP3GlQsNu1xyDwxrr7aMJawqDkKijJ+lZzMDwQOfUVqR4ESY6bRWuDjaTM6srpHLXbPFPd3Qz8lrtTHUHJP+FGoF/s1l1Z1uIt2Pryand15z/EMH3pBISv4+lRYLj77cbG4CAljGwGPUinxgxQqgHCqAPwFNdsoR6ikMnyD5abTFclLFgfpVCzt5Itbv5gAqSxxYORyQCKsCXAHBqHzgt2MfdKYP17f1pJaj5tDQDHnJFJwcZJquZPb9aasvUGtLGbkWGww+Y57YJqG5toruAwvnB/GgPk9h+NOyMfwj8aVmHNY5608I6fbak8yW0MbDkMicn6eldKkSRKFVRgVXk/1off/AA4p3mY68/ShtX1G22WN23oBzTg5xVcyc5JIpFmGCc0ubURY3jPXrRIiyqyNkqwwcH/Cq3mdqcJiO+Kb1EpWOe1TRPEltmXQNbmI/wCfa8w4+gYjP5/nXNSeKPHumORd6THMBxkQ8fmprvLiIXAKyXExX+6rbR+lUm0WyJJMch+rU1NdYplrTdnDXHxI8RMpUaOIX9VjY/oaytR8c3t5qEd0dLEbxBMYZsBlcNux0ycY+hr046JZ9cOAf9o0r6FZEHaGI6/eNXGUV9j8Rymn1/A4mL4s3JH7zRh+Ep/wqVfisxbadGchuAPN6/pXX/2HZNjKZB9Wph0OwjBb7MH+vb3obpr7P4kXv1OEj+IMNjBe2A0+SSORnAZZANuRjjjmq2l+O7fSpraSLT5FxAsFyisAsm37rD0P8676PRtOXaiWvAGB0qYaTZn/AJd0GT6D/Cjnp2ty/iNyfc4mXx7ZJetqI0ybyruNo5YNyneRj5icfpUOiePLPSLorDZTC3dAHAAyzDo45446j8q72XQdNnfMtqC23Gc0yPQdN+6sAGCfT/Cjmp2+H8RczfU5/wD4Wvb540q4P/bUf4VkyfEFbjxFFqU2m3Lx26FbeBZcBWPVjxyev6V3ieH9PT/lmeP9qlk0axjwVgBHfnmlzQS+H8ReVzg38bodT+2xaI+xgQ8LvkHIwe30PTrUlt4+1C1lUWOjskBJ/wBHZ2df+A8ZX6dK7b+x7TdxEB64Y1INJtA2RGSvf5jS54fyfiW5t6ORh2OveLNYIxa2GnQt0kmyzH6AnJ/KvS7VZBaQh5N7hF3NjG4461ya6bZAZESZPc111uAttEBnAQAflWmHleT0SIlsczJneev4URo/ZifrQ2NwOeacrZwCwA9TXMkkW2PwO+eKYWXYWPSsjxB4hh0CEGaJpJX5RFOMj1zUOm+JLfVLYTJFKMMFaIgBvXHpRJ8q5nsXCnKWiRyWv+PdRtdUmt7OKOOJDtVnXcT71v8AhrXpdb0ZruVVWeF9rbeAcc/yqzf3fhjXFe3mtcOG2qwhG4NjpkdOfwrGs9O1nStPnMJtkjcHMWegPp2zzWrcXCyVmXKFjusj1/Km+bhwMCqF5q0Gl2cUl23zsoGyPkk45qDRNcttdaZLWKZWhxuEgHeoTdiHRlyqbWjNKS8hgXdPMka+5qYSRva/aVdWhxkMrAgivMviVdX9veRRhXW1VBtcf3u9Y/h3xCloogmuJwryKXZZCuR3GOn49a1VKThzjVOL0PYmCOUdTnPQinhwu0HG5jgCqkDxeRH5bDZj5cHII+tMa42X6ID0iZuvuBWG5k2aDZCg4pm844A/KoPtAI5c4pwmBPXj0qiLoZBfrPdSwCKRJIwCQ67cg9CPyqwHYthlxx65qEFfPaTYoYgLkDkgZ/xp5mUdh0poTt0HBmY8EcU7IHXH4VXE0eSdvWgyIeStVYSZMHK5xk59akEjLHuxyeCOtUZL2BJoopMgyZ2HHBI7Z9amMqgjnI9KLA2iYSHP3M/jS72PBX8M1ALhc+gpPtALbdwANJuw1qK2Q2PunqMVmzPK1/sV2wGGDnitJCpJOc/WoDa/vvMLZy3pgAVEldaFwlZu5Y8xQdwBLY5oiJ3EkUjIuQBt9zS79mBxxV+pn6FjdkcHp2prucdKjSXkjHNLl+xHvntQxEUmXOFbGeGUHkCrAkUcAcYqMYUkDGKOwyQTUWG5dCUSL3H510cBP2eP/dH8q5gvgcjNdNb820R/2B/KtsP8TK6HFTEq5IfIp8TvIFQcknFV52y7c96r6jP5Gi3UoO1gmxT0wW4H9a5E9Tppw9pNQW70OA1S01jW/Er6dFcI8DXBMbmQBSpPJBJz07D0rp1n0LRNEaFnmnv/ADG5RdrAnj5SeMYrlJnM0ThQVmjOQQfToRRaX9wb3T31K0+0QNOruyHLFSemM4/rXUl7SNmtuh6WLouhJNSbT/Q1luJLb7BBb2nl5fcZc5aTJ4znj24rr1USLDABxI4G3PXByf6Vg+NptviKJYxgxphQPUNkcfhXSaPGJ9R3hQ5QeYULYwvbP41lPWzPOqO7KGu+HdRy07rbnnAcuSOfbFZmnXml6FpjeXd3bak0hBCKqrk8dSCCB/kVveLdZknEGmxRtHcTzIqK3fJIzkds4rmfFFrZ6HFHZKommK7jPuIJ+q5x9KuEUtEaupKUUn0MjxhNdT3stteXC3EUfTywAob3x1o8NeHLPU9BM93GTLK52uDgqBwMe1cvqtw8kW52Ykt611/h7VTB4atIkZnlVG/cwxGSQgE846D8a3qKUaa5e5jU0djU0+2n8NwgC8E1mSA4kG1kOOo6jHatTTrk3dxLe8hGHlRKf7oJy34n9AKjt7WOZIZ590shAIEvIXI9Ogq2oCEkDArilO7u9wm+Zbalvf3zmpFcdRVRXHBzkU4SAA4PWmpHO0WvPbGAtMeToMc1XMuB1pplzyGp3EWAzdqdlic4FVlkI60vm5OARSbBIZesWNuhAy0wI9sAn+lSCRuPTNVZmJv7RTnkSH8cD/69WSMMQehH60N6DtYSV5liLxKJHUghGOAwzyM9qxfFniaUxxxx2E1r3DAjAI9CK1Zpkt43d3AVea57Tp/7e8S20EztHaksFQHkjGcj0J9acHd3toddCHNF36GroHiSLV4SrgR3CD5o89R6it1JVzk9DVR9A0yC/R7TT4o0jyWmIIx+J71Qk1mC0bbOHU5wAOeOx/KplJX90lYedR2grmxJLgjGfwqvNfwQECWVEz0DHrUFrfQX0XmwOHUHB4wQfQ1zXiSVYdQQNIoMqb1B744q4Xk7GMKSc+WWh18d3G43I4Ydypp/20j7u7FeZaXfT2mrRlCSJHCMueDk16EC3496uacHYyqU+V6FoXG45yc0faCc8moVf5DgfjQJew7e1Z85nYsC4ZhyT7V2toxNnAcnmNf5VwnmEjFd1Z5+w2//AFzXv7V0Yd6stHCSuBM31Nc94l1NXtE06N2Af55cev8AD+QGfxqfUtTFqZzs3OnJUjO36jufQVzOqzQ3mlT6vbyyKVzGA2CWYbQSfz/CueEG2ehg506NTnqq5h/2nLDfxB4lk2/K3OA+fXHSmy3M9mcpKkihxJiP+E9cex9qXSorWeC5+27o5lljAGDwuCWJHfoB+NXLV7CXU7e3PCMCdkeD1U5Bru0i7WNZTlWTlKXoRaPfTLqb3E9zJkw5Uu2ep4HJ4r0jw1qFtpulXt3cNbxXdzIIx+8BDY9DnB5JrzmGzXat5fKsMBTdDbbsNIg5yx7L79T2qtqN4upGC2s4mkYHBUKB34CgfdXB6e3NTKHPLQ53NKPKkdrr3ie207xks1yrOluWjBUZIITGQPXJrA8ReI4JtfhvFXzbdmDFOM7NuACOx9qyb2yMM1rbajuSeSQO+35ikeOnuetTTGxjVY5UWK2TMio4w0nYZx35JpqnBWa1JV5aXsYWqXJv7p5IohBB8oEaNkDt+ddjY6jCGWGCC2lckJKrq4ZIwByWUgEfmc1ykiC8lYWcDRQ8csc9OmK3LLTjFGpyyg43c8sfU1dSyiugXSut/P8AyO6GpRwny9jBR8u7OSPTP+NINR3njIGKwISxG987SAFB9u/51YUkliD7V5/syW4mt9u4wOlOF8MDnj61jFmB4PPfFRNMYzxnPqBVchm7PY32vUPenC+TgZAP1rj9Q1K8EarZx/OTy0mMAfSn2BmQie4LTTnuzDav0FN0tLgk+p2C3IZRSicHpWB9plwAI+M9dwpVuZwc4Az71HIxOKua99NIXtZ4wzeRMCyqM5Ujaf55/CrUl4Gt5jE4LqdowM4bsMViLeSE8YyDxVa0upFup0umzMx3LIR95fT6ilytmkORay1LWr2mr3dvFDJLaKWUGVI24Q+hPc+1RWmhRWyiYXMhvEIMcmcBWHcCg3hkYhQeDVeDWPN1q4sEjZ5EUspGMZxnknoPc1oue1loV7Vt2WhU8TavrLWzxy3zuwYfIpGP0684rZTSru/t4DqFvNbX5RUwuG8w4zjH97qcdqwdXsf9MMX2pZCEDkxj7rnqPfBBrVPiS+g0mzv7q5PnWpcwkn5mBwCTnr6euM1U4Xirbno87pzdSi7K339yNNN1nQ7pntrK7kVm5URkmQ/lW4PD1z4pgUapps2nGLlJHkXIJ64A5/Oubk+JurXtk0rwoDDINroSMgjkMPp6U/TvG+p6lfJENgLuNm1s984q3TqL3rarqeZOUakrlm88LyeHNS8y1uxOuMoZVzj/AOvWtpOpvewSCUBZom2sF6HPQ1s61ZSXemW03IcQhj/n8q5GG8NjI0iQGRZ9oKqQCG7Hn61m37Ra7kzjpodMJD2NHm/L2B7VlfaSC3NNF05BHTB9ayszPlNgTe9egWX/AB4W/wD1yX+Qry5Z8Ic88V6fpxzplocdYU/9BFb4f4mK1kfNN9NcXd3JhnJ3ud7NtHHWrb3ttb+EktFKzGW5yw6HAwW56gHgfhVDVZrq+vHMzllRiqIowqjPQAcCnyWsa6dBtZC6mRnXzFBAJGM5Oc8V1OKdrmtyLUrh7u6EkaNDHJFHlAc5KjH9DVrwyiDXoAWweQeM5z8uPxzUNtf6bLbxw3QuIGRSvmw4fPOeVP17GpdMubK21+0WB2nBnjAkWMxfxjqCTTfwuNhrdFJ7y8ubxnUvLcSZThd2eMd++PyrS0fUrDRrFjNva5mHMkD4kQeg6gfoaq38l7LcNAvl20UTOi+WNpbnBJPUk4plppG/GFLnrk9KJWcfe2Grp3RVe4lub1prYSKufleUglR/jVq201pJBJKzSuerv0rctdOhQ/OOQOhGP0qdo1Kuq5JA4/Cs3W6RFoVo7eOJcY59elaCBXhXdxnqKgnb930HI9KLVx5Cg9c1k9VcTbaLyFf4hyPenM2ASABn2qLeCTgjNPwWXAIOKkzsxr7sgBuCe1KYw3U80zcFIOeB7U8yKRuoBkJRQQdoJ78UvpgYHpTWcLnABHqaXcM+maY2yUONuM0bwehNRb+TwKQnJz6UWJLCcnqQT0Oajnt1kXDFsqcgjqp9RQjqcMRjHFOeQgFRx3OKWqGnchUSySJHnMjEANjAz71IunxFbwJbNKm4LeyqxIZ+yZHYd/U/SrMKCyhWQkm6m/1XP+rXu317D8TWHd6ZeSatJaafevbwuvmPtkZUj4+bd7Y5/SiPvaJ2Oik4wknJX8jSs9Ps9MuvtEwit7IbTI7tlUJ+7x1Prj6019F0/X9btbO31iO4IlKTxqp2IueGB/iyOw9aztWjg1GFLW3u0S2i+4CCzMe7Njuf0HFVYdKWCWWQXEqGQAKViYEEeh4q4xt7zevodVROb5Uko+qNfxf4YXQtTEFmqi3uIgcM3Vhxx7+1cfPbPp7Q3VvIylSGDjqp7GvYNejt/EugaYd7i+ZTJaBl5kZRhkJ7Nxx68V5fBC91ePZSq0aoWLbxyVznH55rSlU93XpucvsnUkoJavY9I0vxhqWv+G4l0zTPPvlKwXJf5YkJ7gn1/SuS17Rb/Tb63i1GYNKHBCQ52L8pPB7n3rqvDGtaL4f0dYJ5xDL9sEkiKjMdmODwOegrP8a63pmpzWt/ZXPnrGNsgVSCpPAyDWcLqXurQVSm6cnCb1RUsrkzwbXOZI+Cf7w7GriH1rkbHULiS+2R7U+U7Vb+L2Jrai1NeUuFaJ8456H8aJ02mc++xsbwa9Y0xs6TZnn/AFCf+givHYZVki3A8etewaWR/ZFl/wBcE/8AQRRR0bBo8Dkt0E8ionVmHr3qncWUajD4YdwecVaupiLiQIwxvPTjvVdhv6njv701e9zoZmmwgkf93GwH161esbJIJ45dnMbBsDqcHNL548ngBT7U9ZDu3ZzkVo5SaJ6k90YZvNmVNryMXwTnAJzU1vE7iMW5PmOwRVxwT6VSj3zOqKAWJwBniuqg+1Jp8MQuLcGE5BhIYrz7VnK6RV7sjvtHa1to3mnXzTncRwq4x379R25rKVyszqDvHZh3pb2/ujb+XJP5iSSHJ4PTkU3TdSjsluHMSyPhdue3J4/Gko6E2Y6RHjtvOkXETnCZOCx9h3HvUKsEHGG3HgCoLy6mup/PuGLSdFA4VB6AVCrsq5UkH61fKC2LEsk8d6IyXCBA2V7nP+eKtLMQAfmz34qg0z8Hccj3pxkd+rj8TS5RNFtrolgeaQ3ORg4NZxJ3fez+NPCFsc5quUlxLpucjAwKRrjgdM96pLHIuSelBL44zRyoOVFk3Um7oKU3Dc5NVCHyMnikUY4Zj+NPlQuVF0XIADAjj1q/abRE1/dZ+zIQFUHBlbso/qewrOsIoJZsSyFFBwSBkj3qfVL1ZnWGAbbeFfLhQendvqTWco3dkVFJak/2qe7vlzl52I+Ve56AD09hRqM+IHtIJsBcG4mHO9h0A9VU/nz6CoZWOj24BYrqFwo8xu8EZ/8AZm/QfWs92JiWKIglQR7EZ4/nRGCbutht23Om8O+J3t2W1ugNiDBKgEr6Eeq+9dtcR2mp2YjnUTRMMg56e4PavFwjNKJoZDFKgwBnG4+nse9dHY+MI7ZUVY5lIGJVJAUn1wOn4VzYjBtvnpbnTSrq3LM6i70gWtjbwmaeS3hneRWQZdFYD88EdfeqHiXTUvWstbW6jkmjAjlbzBumXop4/iBOCO/FKPF8rBWjsMg9DvHP0NYWq66EuI9QFmbaRCQHjZT8x77TkZ98U6Ea3N7w5ThC0o7rUr3yjG7jcowcVzf2yVGlUN8j8Mh71u2Qm1DS7q5dkZFbervIN+OhXA796p2umRXENxIYdzRE7v3u3dnoAMda7qdoKzJxtb6zP2kVYqwS7BBcL95HGT+hrfkaOZNpwR6HvWKBDBIbY2zRMzbTufPNRm/exlEW07UGDk5B9/anKPNscmyuzZiSS3Ba3kKgfwHkGvedFZ20HTiwG420ZP12ivBLe4S5iDxE89R6V73ouf7C0/8A69o//QRURvfUT8j5+uiGuZiOBvY4z7mow3y8028fbeTY6eY386g83rmnys2FLBGI7GnqcqOe1QD53608Ng4HQVVhE6rnOfxzUs1z5ixwooSKMY2g9T3J9Saq+aFySc0xZhu9KOUCS58wQPsfAAziktEM4BdxlNxwe9RsTNvHUbef5VNp5liuXwdkDfu5M9Nvf+VO2gMuPNGJomxv2qu4ep/ziqxHzn68D2pqThnZcDccnI44qKecGTK5PHXFJR1sGyLLsMccGm7h35qm85JXmgSEsOcVXIK5cVl3ineZjO3iqCSnd71J5xLDNHITctrOx6kDt0o88rxgj8KrCVc8kfhRJIMcE80co7kpuGLnigvuHXn6VUkdgeDjPtUwYBeTzinyk3LCFgcqea19Pe3sFkvLjbJKo/cxsOC3Yn2HpXP7yCME+tSfaj5ZiLEoeSM8VEqd9AUralieR53eSZy0jnLs3JJNREKEGcZ9ahM2zkEAdKVplABPIxVcom7hICGIOMNxzVK5SVG3Dlc8+tPe4MrAIDtz0PaljlZuCMj1q0rE3I7TVbiyyEIeJuWRxkH8KtvcabqaFGZrOQ/3/mTP16j8fzqq0Cl964BHtxVeWIEFimD7UcqeqDmdrFttKvrS8b7OguVRPN3wfMrJnrx/kV0fh7w3c65FczW88Maqw3eYTnke1cpZyXNnOk9pMVdOQQcfhWvpvi6702WVhbxsJeXUMyAn14NRVjUcfc3HTlFPU9EvPCTanFEL6aMSIoVWhhCngcDOelec+ItHudNuAk6/P0DAfeHrWyPiApGDpuT/ANfUhqjqniq31OJUawMDIcq6TMSD261y4eGIpytPb5GtWpSktDEspZrV9yq2O4x+lfSuhvv8P6awHBtYjz/uCvnFNbuGGJGmkc/xCZh+lfRWg/8AIu6ZlcH7JFxnOPkFdUlrqjmj5Hz5fgrqFx/10bj8arZIB961btQbuYkAne3b3NVCq5PA6+lCOhsqR7ud3JpejY9qsoq4bgdfSnIq7fujr6VQrlUODHx1qPy2IJUfd61eCruA2j8qmhVQX4HQdvrRsCdyh8/kOqkqZON3sOtRu5STAxj3q8VGBwOn9TUEqruHyj8qaQNkETMNwJxkYOD2qJnbbt/lVoKOeB+VG1euB+VVYnmK4wANw/WpflJyQRUm0YXgdfSrW1do+UdPSkwuUYxtb5h+dKCN3bH0q2irvIwPyoCLuPyj8qAuQEoBwf0pgbORjp7Vd2Ln7o/Kk2qC2FH5Uh8xTkwxB9OKaM4xkVcKLu+6OnpSxou77o/KmiWyjt6Zb9afgbiDVpkTcflX8qkEaY+4vftRYnmKRVGHHbrSsU28n26VoJGm3Gxfypxij5+RfypBzGOIwGyAACKWJHKNg9K2BFGWGUXr6VZihi3n90n/AHyKbYkc4C4OCKV1YjpnNdF5EWT+6T/vkU3yIc/6pP8AvkUybnNeUEPFHlZXpXTLbwEDMMf/AHyKlS2g/wCeEf8A3wKYXOOMHJxmkMLHFdqtpbE828X/AHwKlSytef8ARof+/YouSzkLWFUbcfmIHHtX0loQP/CPaZ/16Rf+gCvJrWxtPNX/AEWDr/zzFez6eqrptqqqABCgAA6cCsZvUuB//9k

辅助函数,用于显示检索到的图像,作为生成响应的源上下文的一部分。

from IPython.display import HTML, display




def plt_img_base64(img_base64):
    # Create an HTML img tag with the base64 string as the source
    image_html = f&#;<img src=&#;data:image/jpeg;base64,{img_base64}&#; />&#;


    # Display the image by rendering the HTML
    display(HTML(image_html))

显示与检索文本相关的图片

plt_img_base64(response[&#;context&#;][&#;images&#;][0])

q2:

response = chain.invoke(&#;Woman with children&#;)
print(response[&#;response&#;])
print(response[&#;context&#;])


########### RESPONSE ######################


The image in question appears to be a portrait of a woman with children, painted in oil on canvas and measuring .4x114.2 cm. The woman is likely the central figure in the painting, and the children are probably depicted around her, possibly playing with various instruments as suggested by the text. The woman&#;s age is given as , and the painting is dated , which places it in the early 17th century.


The historical and cultural context of this image is significant. The early 17th century was a time of great change and upheaval in Europe, with the Thirty Years&#; War raging and the rise of absolutist monarchies. In the art world, this was the era of the Baroque, characterized by dramatic, emotional, and often theatrical compositions. The fact that the woman is identified by her age suggests that this is a portrait of a specific individual, possibly a member of the nobility or upper class, as such portraits were often commissioned to commemorate important life events or to display wealth and status.


The symbolism and meaning of the image could be interpreted in several ways. The presence of children suggests themes of motherhood, family, and domesticity. The fact that they are playing instruments could symbolize harmony, creativity, and the importance of music and the arts in the family&#;s life. The woman&#;s age, , could also be significant, as it is often considered the age of adulthood and independence.


The related text mentions that the painting was discovered only a few years ago and that very little is known about it. This adds an element of mystery to the image and suggests that there may be more to uncover about its history and significance. The text also mentions a French artist, born in  and died in , which could indicate that the painting is French in origin, although the date of the painting does not align with the artist&#;s lifetime. The mention of Marc de Villiers, born in  and the subject of a painting dated , suggests that the image may be part of a larger collection of portraits of notable individuals from this period.


Overall, this image of a woman with children is a rich and complex work that offers insights into the cultural and historical context of the early 17th century. Its symbolism and meaning are open to interpretation, and the connections between the image and the related text suggest that there is still much to learn about this painting and its place in art history.




{&#;images&#;: [],
 &#;texts&#;: [&#;\n\nThis portrait is dated  and gives the age of the sitter, . To our eyes she would appear to be&#;,
  &#;3\n\nThis painting was discovered only a few years ago. Unfortunately very little is known about its&#;,
  &#;oil on canvas, .4x114.2 cm\n\n4l\n\nat which they want to play their various instruments.&#;,
  &#;French, \n\n46\n\nThe sitter, Marc de Villiers, was born in , and since this painting is signed and dated in ,&#;]}

注意:该查询没有相关图像,因此图像召回为空列表。

q3:

response = chain.invoke(&#;Moses and the Messengers from Canaan&#;)
print(response[&#;response&#;])
print(response[&#;context&#;])




########### RESPONSE #############
The image you&#;ve provided appears to be a classical painting depicting a group of figures in a pastoral landscape. Unfortunately, the image does not directly correspond to the provided keywords &#;Moses and the Messengers from Canaan,&#; nor does it seem to relate to the text snippets you&#;ve included. However, I will do my best to analyze the image based on its visual elements and provide a general interpretation that might align with the themes of historical and cultural significance.


Visual Elements:
- The painting shows a group of people gathered in a natural setting, which seems to be a forest clearing or the edge of a wooded area.
- The figures are dressed in what appears to be classical or ancient attire, suggesting a historical or mythological scene.
- The color palette is composed of earthy tones, with a contrast between the light and shadow that gives depth to the scene.
- The composition is balanced, with trees framing the scene on the left and the background opening up to a brighter, possibly sunlit area.


Historical and Cultural Context:
- The painting style and attire of the figures suggest it could be from the Renaissance or Baroque period, which were times of great interest in classical antiquity and biblical themes.
- The reference to &#;Arcadian shepherds discovering a tomb&#; and &#;Poussin&#; in the text indicates a connection to Nicolas Poussin, a French painter of the Baroque era known for his classical landscapes and historical scenes.


Interpretation and Symbolism:
- Without a direct connection to the story of Moses and the messengers from Canaan, it&#;s challenging to provide a precise interpretation. However, the painting could be depicting a scene of discovery or revelation, common themes in Poussin&#;s work.
- The pastoral setting might symbolize an idyllic, peaceful world, often associated with the concept of Arcadia in classical literature and art.
- The gathering of figures could represent a moment of communal storytelling or the sharing of important news, which could loosely tie into the idea of messengers or a significant event.


Connections to Related Text:
- The text mentions the theme of &#;Arcadian shepherds discovering a tomb,&#; which is a motif Poussin famously depicted in his painting &#;Et in Arcadia ego.&#; While the image does not show a tomb, the pastoral setting and classical attire could suggest a similar thematic exploration.
- The reference to Flemish art and the interaction with Italian Renaissance artists might imply a fusion of Northern European and Italian artistic styles, which could be reflected in the painting&#;s technique and composition.


In conclusion, while the image does not directly depict the story of Moses and the messengers from Canaan, it does evoke the classical and pastoral themes prevalent in the work of artists like Poussin during the Baroque period. The painting may represent a general scene of classical antiquity or a mythological event, characterized by a serene landscape and a gathering of figures engaged in a significant moment. The historical and cultural significance of such a painting would lie in its representation of the values and aesthetics of the time, as well as its potential to blend different artistic traditions.






{&#;images&#;: [&#;/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDGvMNpKnI3rgj19Kuae3nW0UhYghcdfSq8MBuLFlU/MEPH0qDR5WdmtiepLD+teTJXi/I6Fubb5lidTwCME4rmpWksrhjkq6/KfWutto2MY4OCOd1cxr0ZF8flIBUYzSotc1hu9ilZ/v8AUIUzwXHX0613kcLCNmIUZOcA5rkPDdus+rEk4KRlh9eBXdwIzFVPU9AKqs/eJWw1IHlA2jIFRurKTuXbjityxtmDDeuMnpUeqQgPjHHXgVyxq+9yluHu3MCYKBnr9aou4BJq/cwsdxXJFURDluhzXZFnO9CS2DGUddveteM7hhRz0NU4IZmTAXAPcitKC1aMgsc4qrCuWLfcAFPOK0Y5Rs54NUYhgYI5qZQTzjFZyitzSLZoRtleTUm35MA1UjbCgED0qyjEMM1MKkoS0KlBSWpNFEAcsT1qYrGCWCjNRh1ce49KU8rn9AadebqNWegoRUSreSAx/LWU8xJyTV653ISB0I4rPkU5ziqSsrkt3ZRvIvMhyhI55rPZVOH/AIgT1Hb/ABrUuk3WzAZGMYxVGSyaPaxJYsDwe5okr6oS7FKWeUIGRyNrbmbp3xWXd38jwzMB8gJByc8mtMwNPN5TjaqqGwPXNZ2q2y2VgyKB87+lVTimrik9bFezg3WKsx5x1HrUVq5DkA/JtOCD3q7HGy2MCcLuH5ms+CFCzqX4LdO9a73JuWDOFEeBlt2CatSB5DgNtOaHhTZtC9Oaga48udUPU0rWJvcR5ZhIyO5yccgcVEZCgLbsseDn1qWWWN1O8/MTjKjpTAqHCv1PQ+9Z8upd9CzDcNI6qRkjrtPSrm4+lUbGNVlLM4Y9Mk9qvZX+9+lHkQ0UNHY/Z8jlgxH0rN1GCTS9UEsWVz+8jNX9EWSRpo488MOBVjxFCJNPSdgQ6HH51le07dzqt1L2k3i3Vkr9j68nNY/iVV82I87ipyfbNM8K3BbUDZEZVwXU+mBk/nTvFCsl7ErKynyhwfqamMOWrYq90V/CpxrTdcGI9PqK9BtpkjcFUGR3rz/wuwXWsHujV3cYJJK9AcVNfWVmJabGwkonQ7cLjk0C2a7J35AHRjRptk7FZWyAf4fWtVl8tTj5c158vdl7putVqczLpknmbWG1cctnimLpsMZz19q0ZcmUksW9zUJIzkd67KMpPcynGJF5QVRgVJk7cAUH5u3ApQOAcGutNswasJHjOSKlyOOeKjIAGaaScAA1Vu4rliKZVOTgin/aQx44qqFCiiPmQc1HKVzM1YzkDnFWVjyvDVSDEDjvUkbsp4bOaapyb0Dnih09sQuevqaz2hJP09K05HDDluM9KgkI6gVT00YJX2MxUy2OgpkkKtIG61adcN071GyAjjrUwl0YSRkFPL1iVSB+8iBA/GsbxPASbVQpxkkntW/e/ur+3mI4b5D+NZevSbo/LHZgavmtchRvJEEtqfIjbPI4GB61nR2228JcA8YNb8CNLbRmUqCRztqpLYrC5mDli33Qx4P1q2yEV2O1G2qMgYrDnC/aHOPu5Jy2Dn2rphaJJE7K+DkjkcVi3lopUlWLEN9CexppiWhUiGCrhj1wvfA96mZVCSIQWI681IRDbNHEjYJA4+tadvaeYu5QCD1GKLBcyrYgxBh2OMZq0HbHU1KloIrjywvy4PFb6aVa+Wvydh/FWbXcpeRznhCRBfXkbAFmjBUd+D/9euhv7GPUbeS32ld6Yz79q4/w7cC38RwZxiUmLn36frXpiWiPhgufXnpXm4ifs6131O+MeaB5DYStpurpMQd0MmGA646EVteK54LhopIZFkwOoPrVvxToLW2pyXVuu6OUfNjja+K5C4V0kIY8g4Irshy1ZKomZu8U4s1vCkX2jxFGoJ+4zYHsK9Y0y3VCOARnBzzzXlXgklfFcICht0bqRnHGK9hgj8kcDC9a5Ma37S3kaUkuW5ejUAAYAqG4ZcEAigTDvnioJpFYZAya4oJ3NHaxQuSqr6E1UwelS3DBpT6U1QDXpUY6XOWbEA7UoGe9OIxQFGM5rpjpoYyYwgk0rL8wx1p8aFs47VN5DFwOK0UW0TdIqlSWAGasxWuMl/yq0kK8hRUoQAV0QpLdkSl2KyQkcnhQanVFjX5RUpUYAoAByK1UUiLtldlY9utRuG6VcIGP8ahdBkntXJUpybuupvGaSsUZAe/WosH1q+Yt3J4FMeFVHTNZOm4vUvmTMbUoGms3Cn51+ZfY1yl1e/aL2KJ1YM8ihgOcfSu7kTggDkjBri2tR/wkds2QMSF8H6GpVnKw1tc2vsu1NiOxPc55xVJ3h+0BCTIwyMn17frWi5ZUYrgMAcEjj2rLlt5Dp8hJO/ODt74/pWqVjEpX5nWFWYkMjeWyqfvEf/XqOFGucLKduR8hUfXr7/4VoJZTXr+W5fylGFJ5356nn8qlg0m6MEsUixxhQTER0GeuavYncyIbSLzPLuQpVJApw3I+g711VusKIPKUeX2IrDjsZpnhBQAOCGY4GFz2q9pyXctxHGqyMAdrZzgDtSTtqM1LaCDduMaFs9T1NW/Jbsw/IUqQJDzKcY/hpv2i3z1as3JJ6GiWh5HuMN1FMODHIG/I17PayZRWUDDc5rxudPmdWGMGvTtCmkm0ezn3gboxkk5yRwePwrix1JzSkuh2UZWumbVxbQToyzIrKVIIbpjrXj/iO2SDXLqGMAKJOMdK9dZ1Knj5z0yOn+eK8x8YQmPXZR2YK4P1H/1qywLtUa8h1V7typ4LU/8ACV27dNqsx/L/AOvXs6kMg3H8q8V8OSeT4giXaD5qsn9R/KvYIpW8pcjnAJpY+/tV6DpL3C1JhR61XMigc4FK8mWxjp1qCSLfjnNc0NxyKNwwaVgoOD3qNDg1dNv3AxVd4DuwOa7qc10OeUWOVt3XFDbu1II3jIDcGpkG5+B05zXXCaeiMpRsS2ozHyMHqanAxjtQqgD5RS4J616MI8qscrd2OXjkcmngMKaox8wNSoRgk1pbsL1AgdB1pgbB6YBqQ+Wxzkg0wsFbGKTj0BMViMdBxUO5WbA6UrtuwKqSXCw5Ix6ZNTNwpxvIcVKTsi6y9PQVFIAQQBWZNq/lZGUPPrUZ14qnEakkdSa53UpS1NuWa0NBI/mz+lcfeskeq2jHOFlcN+RrqbLVre5Q5+Vl+8M9K47VHUagXfO0ZIHvnFc9XlTTia003dMuxaos8jo645IEa8s2D19vqauzQO0SGSI+W5yE6+/zH0/wqOxtfs1mE8onZgvnG4k85JrQSJbeJyFYpIpLgjJ+n60lJilFIZbXcDy+UilZCobDenpnvVrDHhcZNZUMqr5awkiNflJI55P51q2TLMplcELnAzwa1Uu5m4lOW1LyKcBWHQY49qvxRPFNFK3LYw23oDT2RXkwMDae1V7zU7e2DAuDjjaOSTTnrsEVbcS8ky5GQABnOargRY6n/vquevNTe5mJ+ZFGflPc00XjYHyislHuU5GP4itxba1Mg/jAbj3FdN4NuEk0v7O5/fW7sAM/wnkH881jeNrYR6hDMM5kjwc9sH/69M8F3oXUp4TgK8XC59D0HvXNfmw6ludlvfsejiQu6FucDJb0rgPHqqup28ibTG8PG0dwT/jXZhNtsG39MDrxXH+OgmLAqMZ3D8OP0rChOLrrl6jlF8mpy+ns9vcW14oyyThhjtgivaUKywiUAgMoYD6142P3Fm8i84yV9M4/+vXslk4NpCPSNcH8BVY1XaY4WSsTxxKy5AOaf9lUg7W5FPjwfT6VIoxyBXHFcju9hvVFRYGOd3QnjJqQ26gdAO1WlHUtxUckZZsgg130+W1kc8rlBoAXBIJ7CniIBcBcCi6ultXCEZbGSPSqzarEwx5QDHvuropzjTZnKLki0dqLyaaHTGS3B9Ky57kyMSMdKoS35UbVcgVr9bb2RHsV1Z0hdTjB4pPMGMda5kaiyrnJweTTYtRPJZ3CexreOKS6GbpHVvcRxJl3VcDvWfPqtunIfccdhWDc6gsjgDJweFJ61X8zzZDhcDvzkVnPFyV7Fxopmy2ovKrSZ+XOKpyXfnuyA7gATgd6pNOU+QuAO2Kow3SR3G1WO0/xE9a4Kk51NWdMIxjojSbb5fmytlT0UDkelVZnteoZmLDIyelRreNOSWIC4yMdD7CsjUrt1lG1dq8Y75FFOMm7Dlbc0ZZ1icoCFBA4HXk03UpAlzaSsFC8EL649ayFu97ljnnueKNSaQ3EBkcuCMgZzxjIrbk95EqWh0sPiplkKHYzew4ro7a6GoxpMv3SOR/MV5Wh9Tz7cVs6ZqepW0flWpIGeWI+X9a0ldLfQiyfQ6y7VIbeQNiNl+bHTPXoawRrU4KtDOqRNyw7k9+vaqV1HdSP5l1eoFUZOCTWLf3MSswiZmODhj3pQcZO0QUW9zeu9fd2dPtKgFuBnFZxvIt4ZpRgnrnNYDFnXLAjd1NMLFSR6dK6LGXIrnRpLG8vMqMDnndVgXUGP9cv51zDS5+tPEnyj5BScAsjufGlqfsdvcZzhyhJ9xn+lcz4ZuRZeJbWRvuMTG3/AAIYrsvESifw/PvOSpVv1/8Ar159bnZqFuT0Ei/zFcVCnai6cjrlO8uZHsnmqR0GK858bX5n1wwjAit1UKB3zyT+td1MjyKBGwUDnp/nivLNfk361dktuUucc54HArPD0YqrzLsEptxsyaRAbG0t+rzOECr7n/8AVXr2kzb41i+UKqgDAPbvmvGNEZ7rWbKNxuWAl/wBzXsWmSoIkkBUO/LH3rPGQlzRivM1jKLi2zZxyQvBqRJACMnNRg5GQc0qtnIP6VhKnKy5iVJdCcsu3PXNUb+8NpErIBuY4ye1SNcwRMFeRQxzgMQM1k6ze27iKMOu7JPB7VUedapCdjPnnZy0jsSxPJPes43GHA6++agvrreAUY9flHrWSl6VlKHv3960gm9WKSsdBPeLHGE6H1qj9pjAJLDC9RWe0zM5dnJHQVVJDFuOo59K1gnsTJJ6mk97HN6EAcGo/tyRnaxIYHHFUIlKMuBuO7AyKivWCscdc960S1sQ0rGlHeIZixxtzxnrVozmUDb8oPGPWuT83Z8+eC3StX7UBp6GNvnI3HnpzTnDYI2sW5y+CRnoeMVmiRt43dB61Bd6mXnIX7o4NUZ7wkgLtwfxrSFN9QbRuQznyXdTtXPHOKheNrt89MVlw3Y8sBlLMMYFW4bq5cnJESDsRk0ODi7oL3ViOZQj7AeehzV2+lX7NZoQyybVVgRyD0zVSKVYyzRDc56uetaOpwn+z7a63I0ku3OOcY6E+9En7yTGloRwabEjFpWZyTjHar7HbGoVtqg4+aqqOVaPGeR1zVTVjPHCXySp7elYcrqSSbNNIrQp6teM8jQq3yhuT61lu4GM9KhZ2cSN/DnNNJJGO+K9GFNRVkYSldlqWclcYwM0xZAW+YDvUbbpFJ7d896fDGTgAUWSRndkhAJyBipQ/A4qNlIA44pQrYosB6P4hZU0OYHJBKjP4158R+9RgPlDjPtzXTXev/2jp89q8CxtuUptOdwB5FcrdNtZiv3s7h7Vx0FLZnRLQ9ZubpYtPlkD4Kxk9cdq8ku5He4d3XBJrprrWpLvRUYsMyYD/h2/OuTmlZpWPWnhoNXuEzY8IW32rW5RxjyTkt25Fem2cTw2saE5YDqOlea+GBNC011EwUn5MnuK7SDW0tLcNK6E54VeKjERbndDjJJWZ0QuzaxmR2woGWJ6VmXvja3iQ/Zo2lfH3jwua5fU9am1V3RI5EiUYwv8zWUFWQABzkcYqYwt8Qn5F6XVZby6kuZ2LOT3/kKtm8llAyHXIBHHaseOFo5eRuYdB1Ga0DI5zvIx2xxiqqW6CjEtzXIRAXG5yMDmsyVwxYj17VIziWLfzhTjn61RUKQWLYU9BnrWdONtTSWpoKFa2MjZJAwoquZVjAHOW6j0q0Hh+ynGVb9MVlS8MSGBXpk1VPVu4TVkrFk3K5DAnjpg1VuCHAZieewpuUSIkMuTx16VRa6jzgZJrojG70M3oPBydpzSCRlDgdCO9Qm4YAbe9Is/XdkcY4Ga25WQN+diQO+elSCNY1VnwWH8NI1xbiDYFZSecjvVRnwc9jVJNiehoWlzFGZCVw579MVOJEkBIIOfSsl0+VWYjn3qzZZmlCIQfxqZRS94pN7GmFHlccD2p19Of7Ft0QgsjHPPPX/69RSboU2s469Ae1LKS+kh0HVzx7VjbVPzLeisWXv/ACxEUjLbfyNYt/fSy5iJIBySM8UCZyscasQwG489ar3Sl4wR1Fa0qaiyJTbRJaQLNAWycFju+gqCR1BG3GzoD7VLZsf7PlQHDMSv4HFVpF2kqewFard3E7cqBG2k85BqzACG71UVwGyRkGrUbptB3EGhkGhHGHQHHNTiEYHyVWjuFK4Ofpiri3ShRz2rnlc0VigbgBs5xg1WuG3KSmeTTN3zHJqWFfMl5PCjNXa2o73LW0rZLGWwiHv0BxmqKoZriOFcAyEAE/zqWacCExfw5ySetRWN4LW5ExUybVIAzjFKKaTaBtHVwwx2VuIUuAFQYGB1PrTjHFPgtMCV6KFOKyYtYhucLNJ5J6fMMj9K1bfRpbuPzYrldpXKsM4I9q5Z3jrN2Lir7IkhsFk8xmlJHJY44pkdvaiQbZQGVurEelNbw7eDkTx4PqSKhOgXkY3ARP8ARjU80X9sqz7F+VoRIHDAY4J3ZzTJJIBAFVweOTnqazWs5g/lmJQ3oMmlitpWz5sqRqOgPBNHIrXuVG/RFlfJlhZIyXlz8qqDVGYeTjccP3Udq0Ip47OFihTcexOc/jWXes808krKBk9qqndya6DnFJX6kct9IyiFPlzwT7VnyPIcq+Rg81oafHuu8tg8dDUN5FI9w+VwwPNdMOVOyMZJtXKhb/SCOxFKsW7kcDPWnLaSs7ORhcdTU4VBGNr54ya0uuhCi+pRlba2D2qOMl3xnj1qaZRI2V601Y/JBPc+tWnoTbUlk8vYAeWHeqsrkYCjgHrTuWz602QHgYFNKwm7kbE4x1pm3ByrFffNTbTjjv0pNvAU9e9O4rEiXs0YCM29emDW2SH0NJER9u4jeem70/KucaNgOB07100a7PDaHOQ+SR6elY1rK1u5cb6mNG8KHJfn0p0pjI+/xWaAwY8Z54p25lBBP4VtykXLNvhCwBzn9KJx83HQ0y2YhmboCKlkGYkPOeQfzpPcpbECBGOGbmpUT5jtbIqm+Q5wcU9c7QQaozuaCZU9R1qyHGBWahbjnirYPArKSGmVyMEk05X8sBhSOMN+NJIQIOvPpSNCOaTecmkiZUJQqQfpTRHI4yqkgHk9q0pbRUtSGO6cck4z3/wobS0BRb1KjIrIMfe7Vb0rXLrTX8qNt0THG1ugrPJIzto25cEd6JQUlaQJ21R0c11PeOXaYEf3UbgUkb3GMK74H+0aybKUQyEZIyfSrguG/gBP0rB02tEaJ3LYWcA7ZCD7NUZjcP8AO+R37moI7suD1FNEzs52gk44xTUZDuiWQLyMZ9M02NVcYLgZ7VEZCVz1J6U/UoEs7pY4Z/ORlUlguMHuPwqktbB0uaWm28K3ineGz0BanXoiW+uCqggvwaxoZPJnSUZ+U5wKeLqSQlnbBJyaj2T5r3Hzq1h8/myynBJAGD6AUyOPDKHGEPPBqwrjO5mwD1FRXAV13RZAIxj0rRdhuOlxWeBeEHOeKhIRsg4qOOB3fbyWPAA5ye1W7vSbvTmQXaCNm5C7hn8qasna5m7tbFMxp/CeagkQqNwq4sAPJb9KkWFWQYIzVc1ieW5lgMDnBppfcSTWnKgVMEDI6GqttaJPfpHKdkRPzMOwqlJWuJp7FZHBODxx1rfshu0CYscqflH1xWbeWEdreRRlmCMwBI5wvFaOoQnSZGSIeZZyn5RuG5T3rOpJSsl1KUXG9zA8k7sAZ6mo3Uh/Wup8PTW8NpeSeSJZHYKmRygwawbxEN4zR5weT7VrGpeTjbYJUrQU77jLXmYKBxtHXvVliphIA5ByDVZTtmQrwelWEAZWBOM96JEIolV3HPHpT1h44qRlAfPUU9JB0xTuQ0NWEjr0xVgAYHyikGW4HSpcN6VEmNIpnLPioZQc4xk1KTiQira27WsQlYfvHPHsKV7FpXJ4EVtMSAYLAbj9TUKNK6TeYTlcJn1NJbLK8++I8KMtnoBUskgaMIMAZyR3zWezsbJ3RnTx+Ww2nhvWiMZb2qS6BwvrmmxY3YrVPQya1JAO47HrW7pKJZaZc3lyCplIWIk4O3qcfWqFokf9n3lw4z5UeV+p4/malgi1HWdEaCKB2WL/AFbDp9Pw5rKtG8Vd2VzSjNKbsrtFeMb23HgO+c/U1o2dnaxXozeRtkFSGGMZ96fbTyRaEluLSMNFxKzjJYn/AArLRlG1sBiDnjoah3ldbGiahaTVyzf2YW/cwzRlWcnjOFGaS8ggeJc3LyTKOw+Vfoe9OgmtnuAu0MCckZ5ArYktdOlt5vKj2bFPzbskkgEVMqjg0nc1VNSTaObWAkdacseCMEZpwPJAyTntSmEoATkVvc5G0hhUknPWm4I6CpeTj5eaR4rgDdsIXGc47UXGnc1tE0m7upY7qHZ8jgru5Jx7envUXiS6STWZC8olkQqrMpyOBz9fSsz7RcSQeWJZBGqH5UOBiq0URnZCTyy9qmMHzc0mDnpZGgIs6dLcIQdrY/DGf61oRqlvo8csMauJBtlDgEhucbe+BxQsWnafbNbzeY7vglgehrp9F0C2TTY7l1M6SR+Yqs2UAPc+38656lVJXe1/vOlUnF6nEOpf72OOOlOtrF5CJwuFQjII+8M8/pWj4jtodMuEMJzHMm8A/wAOaWG4MsLwRgELGVUjvmtfaNwUo7Mx5bSs+hW8SeTDPbzwtFNHu3lQuO461dGjv4iBitFTKjhs4A+pqrd2pXUYrcDzWGDKy/djOMnnpn+XWtzRdfhiSPT9NhCqV8x37scZLH0HQAdauMVGmpt7DnXlzSppX5rFnUPBdlZafZR2kjJcszLJIzZ8zGPy5pLLw1pmlRs1/Ik8sgARHXCg55I9a6OdBfW+mTcny0Zs9RkgVxHiw3DX3mSyABANigfd/wDr8ZrhjVqVZcnNY3UYxjtsc7rlhHY6uwhX9wHyMenXFVp0AuJAp+TqD6it/TryPxGotZECzYLOQPQdc/lWDdARztH1C8A+uK7qUn8Et0c1SCXvR2ZBIVycdjxSrCeWAGPrTHwfu9+atr88XPXHatm7HNLc6Kwg05NpdAQYwSTknPf/AD7VY32fa3X8hWNpjuF2Hlc4OR0zWp5U4421xTgr6s0jM4/bicHHAbNb7+T5EayRlwAQMn1rAnOHOO5rfuisMS5wWxlR7VtU1sXS6lWWRY4ysaKiseg71UfgA9805iZDk9ag2zThzEPlXjPpVRVhybY+7wCWxkHB/OqTybVJHWnzz7o1A7j5h9Kit4mu544EGZZXCKPcnitIqy1M5O70Ol8K2TahGSR+5BIkz0I9K6u41qy00wwKVCIw4Re3em6R4fvtP0IW4jRWYMSzPt5OefWsprJNHtpZ3kt7nU2kC28KHzB7kj29682rbEVHzPRbI64NUY6bsb4s8zTtRa4hAjW4hO3A6g8GuW0giRZlkJIU8ZNd7L4buNWtll1a/d5ZEx2Plnrj/wDVVC68HRaFpLXTXgcHBI24Jz2FOhiqKh7NSu9gnSm5c0loczax+XcSq/UNircokhDsBkYwRnrUVxlLhZA2xWAYk+mKjuI2AL7zycgk9a7d2mTF2joMskZgxPJBrYsbY3MggMqj5Wb5ug2gn+lN0qwAtUmYg+aeD04//XW7ZaEIAZbiZk85dqooydjcZPpk9KwrVYq5nTpuUrHLpdpJGXjjAYHnitTWT5+m289oNqGMQsAOCep/Imp7Dw/bHVJIDvFvCgMmeu49qn1u9A0u302zt4UiV2YbTjJHBz71DqQc4qJaThdSONZpIbTy1I/e5BPfg1ZsolguYYxl5zIF2jtz0quY5pLiNIzmXzMKVPrVu2jm0uVr3YZQhID4ONx711z+F23MoO8l5HQavpztZxCdFQAFlcLy2Se/f+ddc0T2fgmCOymDqsKr5g+Y45zVFr0NoCs8UU1ugVgz8FcnGf1qjpWqIfE8lipxYPB5jr2+QZyPqK8vmnNcrWiOyo4t83UzfF1mkNvpbOSTJGjOvpmorWW2s7IzhFecRs6pjjjBAqt4k1JtS1PezbYlIRPRVBwKr6iU+z7IGIIKjPTgriuuMG4RgzG/vOSM3Utalvolto40tLeQ732k9STnJ9Pauk8PXWmR38NtZiaeEQFJpmTCZOOg/PmkFvap4Jgk+xxTvGNzFxj5iTnn0o8NqqT2tzq1xFbsYHa0iVQM7geQBx0IAzXbVpxVKS8jhhVk6qb1toddbyuif2Z5oiKYNtKOjpnp9R/KuL1/dc6vLbwb7hYxj5Rkk45/Wtn7VcW0IguV8y2c/LIeChzgH9K546kdNurnyCCZF2q46j1xXlYem1JyWrPXnbl1egy2kj8PaTcROVN7dAK4HPlp6Z9a583O9w7DrS3fmuRNIDyTVZSfIX1FenCna8nuzzZVL+7HZFhmwM8c8VbgjYoGwc4FZrtkcjpzXWaRprvbRytuO7b06DPrRN8q1MnqPsIzDZHcAPNwwJ9KuLHhQN46VM1vwAzoeyhelWVtm2jkdKwunqJSaR57McyEVqQP9pheV2GR8oz7VkynLt9av6aCdOlKkFvMPBHTitJrS5tTeojkIpOee1WNEjmZZI0tw+erkZAzn+lQGB7q7EMQ4Pc9AB3rfkuI4LVLO3HlQHAecjG4e1ZVJWXKt2dFJa8z6HP6nZWsIVbZ2eVclzngn0FP8GzW8Hii1a527WDKhboHI4/w/GrV1b25tXngyCrhSp/nXOFXjmJBwVbIP8q1h79NxuZVFyyTse4X4SUTRISoSMmWTP3eOg7Z9+1clpWlHTri7u51JACqpPTaeW/oK0rLX7TUrSxjRGDzANOu7jKnlfxPJPpVvWleZIPJO3zwpGOhXOTXl1OZRcHpf/M6KVlNS3L82zy4lbiNnAbHYEEH+dcz4uvJZ5rbShzgKScc5Ax/9eum8uS5jmQKAvBXPrgVyN5ITfRvOFaSEFVcd16Yrgy5e/ft/SO+tDmVluYmu2qxpBtOcocjGMc9Kimg22aSjkFRzW1rVm9y0Zhj+RYi7N7Cs4DboQcEk72jI9B1r3YTvGJ58I7+hs6CiJpFq8gL5yRkZx8x/KunsI4LwMn3Q+AXHVccqfwNcnoNyi6Cgzko7DHfPX+taOhXUs19c20bgSmB3QN/eGP6Zrlrwk27dGKlK0kiXVxFo9hdWslzvupnJJQda4vVVubZPKupNspO9k3ZZQ3TPucZxWjepPf6fDqEtzvl87yWTvGOxrW1/QLBdMku/LY3USIZSWJ3YPOfcjrXbhaSSd9Wc+Jk1I43Q7gWupQuV3x7ypDe4I/rXcSafNN4duI4Y0SBySGc84zz9BkYrg3gRb17aDo0uE9ucV6jpaNbaM6XOy4WMDI6AnGSKjGPlakty8LqYTafLLo8MEM5UyqjEStgY7ZFc1HdpFeRGBnaVTsYkY4wQf0qe91W7fVLi4Em1pSF2DoB2x+FVYlCXGccngmnTptJ83UuTvKyHagvmxEDO58ACi4Di2R5MhmjBIIxyOP6VteGpli8RwyPF5oQEADqv+0PcVq+KdSt72SW3gdZo3bbGyjk54xz059Pxp8/K1GxNmnc4hEe4sFN5N5dkvmMoXq7AZP64H41RW5llewmLENEEhyP9k8foa1LjRdVt2MN7b3CRwREIGT5QCcnnpyeazLBN9rcr1MbLIPwPX9K7U1KOmpxtOMrs9f12xha2hhyAzL5ae7YyB/OvNCiwajAHHyh8Nn0rvPE935lja3EL5BCTIQfb/8AVXLalbpeL9qiXCuN30buK8fBtxWuzPUqR5olbXbfybSRUQhQQc8dfaubX/UAmt03E01k9nNlztPlk9QayrC388EyfdDZx616VPSLucCg+blKksbcMAdpXniu70i8t4NCtWCnzpECsVPJwcVibAFw33elV2AikiKgjByMHHeoqfvFY0lRcdbnUQ3AnLPGm1UbBGMYz71dDtgcD/P41j6aH+wvhxmZs4PoDWyYlz9+ufq0YzilY86kUFmwK0vD9ytpfGN4vMjmwrj056/hVN0beatWX+iKZGXLvwB7V0z1jY0hG8jb1S4tLaV7S0QZBdWcHdnPv6VlXEtxcQGWRgQuABVQytBeESYZXA+YHpVouvkKB1yc1koctmdUXdWbGRStHDIMZVxg/Wsi44lbnvW4vMGMAfNgVkSRA6l5K85kHHtWsLXZnVjojsdH0Nrk29raOFChWuJDn+LqB+FaHiTUjBrXlwP+7gKpt9lHJ/X9Kpvr/wDYOkRwWu03U+ZHl7KD0A9TjvWTFL5uk3d00vmSTsEZ2OTnPSuLlcneW2xrdc1o9D0q0vFEETnB3JiuL8RSI1yEXGVySR6ntVyG8JsRBFKPM2KyEc89CP0rBvpQZfMYEDGWB7HvXn4HCezrOR31JJwuT6LqE6X32UPvjlBRlbnsaqWcYktbiNmYBSr9OBztJNV7C9isbpbibcchvu9cmpI9QgtorjcjlblcLg4wOa9dwab5V2PO50ncvaLbSx313aKASo37T0yOP61e063uIdaSZAfMj3kKOP4Tx9OawLHUJYt11GxLovluQex6fyrb8PX/AJ17NNPMMLtUAnqWOKPZylPXbqZVJKPvROnsdPtWiezuEXzEKE9OQeePxBrL8SzXBtzbhSsSRsJnIH7xu1VdY1yG01lXn3NCsnkTAdQjKGVh9Dn8KoaxcJd2c0n23zYUULGFVvmJ6Zz0rsSscLberOQM7Lcq+fmDA16TpjSXWixwxP8AvpJ3Qg/Tv+FeYSfLMhPYjNdjpd+1tKXVjsysgP6Z/I1y4yHNFNdDuwb1aMy+RY9VlTIOxiMjp6ZphyGBH8XIp12MXkrE5yTz7Ukm5ym3ooxVLZFPSTNDQj5uorBvEZnHlhz/AAnqD+lXNX0iW1XzWCTQl2CSoOpHXPcVz0UFw7rHCpkkP3UTlj9K7XULWW00m5kW5iljVVleDzMyRHIySPTnnFY1bxqJx6m1NqzuY+m6tf2i+XHPKYAMGNmJWs60gSXXmCIFS8jeMqowN3UfnitW5kij0O1EBwku6RuOSemfpWLDM0E8VyCN8Eiyj8Dn+VaUGuZzSsRiI80LGjcSTf2Va7XLRKrIc9PlOKTS9Xs7ZHivOFkU7gTx7Ee4qppVy17Y39vnIikYowPG0kn+n61QkjWQbGFL2UZc0JdwcpckZRfQ1YYre7uQY5Fk2jJCnn2rPhi8ovGozhj/ADrFk320zBGKup6g4rb0bfPCzuGkODuNayjyRvfQzotzq6kM9x5YJJ2jpT4JI54FLY+YZA/SqepxsyBQvAb8aitCTEVJOV6VXKnG5M6jjOzOijl3WttAF2mOZQZV64J4rsPsz/3h+Vef2c/llmZ8YZSD16HNdz/wlGhtyZmyeT+7rnlB3sjKb5tUcT5jIcFAwB7ioLppZZSUG1T69asycE/WmtkjirXc21asUfsO8Zkdj7CrAtjEnEzAA/x8irltA0znj5V60t1aO0yRx4LMDxmk6mtrjUbK6RnG9ZRs8kFl6HdwTUmjmFL157r5nKnaewNXIdFkZz5xCqOhBzk1ZbQsrmJyP94daUqtOzjfcpRqNqVtjJv5Fu7hn8wYAAANWrezuJvD8KJtUzXLBQzhc8defpRJpdxEkkjJ8sfU5p9zcLLp1nbQqMxglix4yabd0lD+tAW7cjYuY7GwitozcGVvLCsYWHBAwaw9Z1OymSO2sVcHpK7Hkn0FUTbSyP8A61unRBUAtUXH3sjnNFOhFNNu7HUxEnHlSsiZkDSZkJEar2qO4uY5IEVAfl6Z9KU25YncSfqaaLfI7cV0JIwcn0LWi8m68w4Qx49s5HP86hsbu4t7ktEoKltxU9yM4/nSwxBWKliMirlleS6ddie2CGRePnXcKT0baG7SiovoaHivTGRY7wufnSMzREYKZXg/Tt9RVmbTr6Xw5a21tEs0SYdpxgZUj5c/qPwpv2iXXC7ajcoG8l1XdhcnBIH54rT0XVLPSNAKajKs80Z2xwI27cMZGPQetFOTcVzbmFSKUny7HIroM89xLC7RRyxR+YyM2Dg9B7k1p3unzaMI4ZmzlCC3YAEjH6U/R4L6/wBfk1S4j2rIGbceFYk9M1sa/cPBdRR3dukkVzC7bWPzRkHGQeh7Uq17XWpdCSUrM5Hzw8avkELwfemtdoFJ6AdqVNIuLpn+zIWjPzADsPetKw8J3l2zK5jh2nGXbkn2ArOdSlBXlI2Uakn7qIPD+sCw1xbrBJETqvHQkcUx7qUSSzM5Z5kdTnnIYc1vR+ETb3aKjvJJEVaRgAFGe1Gm6fC/iSzsrmJZIGmZXU9Nu1qwhXozm5Qd9PwNfZ1Iw94pardLF4c0eFUAYW4JJ68k8fzNc814NvC8kd61PFMpe/aP+FW2qo/hVeAPyrEaMqMkHB5H0rpoQXIn31+8zqyaly9i34fuhbPqEP8Az0iAH4GopbryL47j+7KhT7H1qfSI4omuZbi1ndpEPkyAHaB3PvWfdRNLKzjlWNacq52Zqo+RJdB9/Fz5o7jn3rT0S6FtYvz8xNVpkae0tw67ECbB746mnLf2kCpCqZROORUzXPHlsaUZcs+e9jW32s+4snPr61l3NsodjEatxanZmM4hj3f7Qqt9qiMmQQAe2c1nBSTNq04TWrREDujUD+Ec/WqwJx0q5HHLOWEaNtByRT/KI4wfyrVNI4Grl8oAGyqt3zmrcVpDHCTLtL4zkdV9qz52iSVSEwCQaUlpZJGdnGfQ8Vxyi31OmM0uhJbOotw2OST0qO7lRo8tkMvQg9qt6f5VqjJKyuTz/u1k6neJu2qoGTkgU4+9OyCUrRNLSrl/LMWzcgbcXLdCelaMjyOp8uVEjX/lo5ySfaudtLgNCQGwuc4x1NXZWuHmEWx92AVGOoPepnSvK5cKnu2LN04+zOv2obyw99w79OlUrSIXdwUJCZOWAHQVMtjLuKhQ8vQ/4Cte20qCzkglLssoUb13ZDe2KUpxpx31Y4pzZBc3dhpqJFHbBm4JCN8zHtk1f03wa9yz3mpq9rFIQ4QMMhT6+lUL82tlq1vPLbRBZJPMZzkkY/8Ar4p0ni27lS7VgWguTkxZ+7/u+gqIqbgnT69Rza5rS6DvEVvDY6s1vZqiQxOAAVGQe/PcYNVHEN9NDbw28aFZWVABwVPTOOTg/wA6zZdUE0zGXzN56se9WNP1h9OuTdRCJ5FUiPf0Qnv7nFbqE0vMhSiW7nTIJ7uSJSLd4zh3x8jD1Udfwqje6RLbZKNux2b5WP4Vd1DxBbfYrcW1zJLcbB55ZfvPuJyD7ZxVRdaNyVe4eR3HAYnkDvTj7VK/QP3cnZlImWNQDnBHWpFVyAeORVi4v7OaJppFbABWNV6k9qyo7x7eZXC7lBBCt/KtY80ltYznyxe5qRySRLtDEL6Akc1JJKrqEcFsdCecf4VGNYjeUMLMbcZwG6VKmpW7j5bcBlHIJHNZvm7DXL3Oq8LaYZred3iTynAUL/exzXSmJIY1RVEQXoAMVw2m+IprOB4l+VScrgA49qgn8QX11NvdjtHGBxkV4lfAYivWlJuyO6nWhGKR0N9f2lvOZBJ/rD+8zyKoTiI3kGo2hwIiWbA44B/nWeGtbghryCQgD5VDcfjUuoapLNplvZWyKoTIOVwFHYD8zXXRw3I0le/4DnVTXkUIng1HWNLtLeBJZwrtdGcZDknP6CpPEEy299HZw28IitNxjcJgndnryehPFVtFP9ja2l9cqX+VgSO2aq6rPNe3080cZ2u3BPTHavQSftEl8NvxOTTlcnvcLPUrSysZjMsjTkFYvm+VQRzj3rCNwN4IK7AcgHmrzaZcPgNkg8gdqU6QVGcE9sV0R5Itu+5hLmfQqXd813IGlcnAwAg2gD0quuGPyIc1sDRH2BioXIzVvTdNiium37WIAxnpjuaHVhGOgvZzb1MFVli6qy59RU8Es0Th1Chv90VqapeCW+YOv7tDsRe4GKZb232sfKox25qfaXjeSFya2TK4u5hgbUxnOcYNSeex5Krk+9XjpEmeMHPPBp39lr6n8qzdSn0HyTM2Rmd8n2xVsl1jO0deeO9TSovlwHaOU5496kQDy+gptCW9jDlguDL5nzHJ5FVZYXJPB966YAc8DrTSiseVB47irUrCcTH0xJI+cK6/7Rxit83yqiESsR0wp6VHHFH5qjYuPpSzIolwFAGR0FZzipO7KjJosw3FvIGEEjxuR8xPWkOoeQjBCjuo4JXrVadF2D5R09KjkVQOFA4HQe9Z+wi9zVVWtire3ct5Kry7cqMADsKrsrxkKF+YjcBVtFG/oKk2rvztGfpXRGKirIzcm3czDbzPlz2GQOmaqvE3mY9fWuqZFMOSoPy56e1Z1wi7U+UdT2qoSuTJGL5ewkbc49KcNwGDitEKPQUxwNp4FWSUfLY42mpRasVV2J5zVmNRnoKvhV3Q/KOh7UpaAtTKELAblJIxT/LOcsCBgZNdJBGn2GX5F6+lIkcZdcop/CsfaGiic+FkUBxkKanjkfjByPete4RVjcKoAz2FVYEUuMqOnpTT5kVazLVv5kKAsVK4Bwe2a0URCu/Krn1FZIH9K3dKAc4YAjPQ1x1oWVzppy6Feey3xfKVaQDg0kNuyRbZow208HFbMKgWTkAAjgH05qnN/rsdieRXOpyfumtktRkNnbq4IViScr6AVKtnHIr5gUYOelTWqrs6D8q0YVG3oOlYylJS3HZW2ObudPVl2bZQuc/KKzX0m4aFi2FxjGDyR712EiL5xG0flWeyj5RgYz/jXRTqySM5xTOQl0spcksQ+BkndwKvwWcccIaPaDjOAa17kA78gfcas6P7tdHPKcdzJxUWRKRF8yxdB36Uf2hP/dWpGPyGmADA4o5E9WS5NbH/2Q==&#;,
  &#;/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAD6APoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3qiiigAooooAKKKKACmu6xozuwVVGSScACiSRIY2kkdURQSzMcAD1Nec+IvEj6yzW1qxTT1PJ6Gb6/wCz7d+9K5MpWRL4j8TPqTNaWTFbIHDOODN/gv8AOsAk9ifzqMNg46VKrDoanci/URZXUffb/vo04TyYwXfn0Y01l57U6NT0xU2GPDSbgfMk/wC+jSmWTOfNkwP9s0Ee1GM0noCVwMkwHyzyjvneeaWOWZs5nm/77P8AjTcYI7mtqxsoBAJpV684boKyqVIwXMy4UpSdkMsLSSWEzTz3AX+ECQjNTz3fkQmKLegPJJck/wA6srcQFfLTAwOBWTdELvkkbCL3ryqtaU5b6Hp0qSivMr3OpPBCzyXEvoB5hGa5ufV7wuxW7uEB7ec3+NPvrkXsoIUqqdOf51mTLvkBGdnT0p07rc0kTHWtRCEfbrnPr5rf405dW1JQD/aN2DjvM3X86z3ZRwASR60wyd9oA9611MdOpoxeJ9ZtLhJo7+43xMCN8hYH2IJ5FexeFPFdr4n0/wAxMRXcYAngzyp9R6qfX8K8I2s7ltuc8j/GprDUrrR9QivLKUxXER4IHBHcEdwfSumjVcHYyqQ5lc+kaKwPCvim08T6d5sWI7qPAntyclD6j1U9jW/XoJpq6ORqwUUUUwCiiigAooooAKKKKACiiigApksscETyyuqRoCzMxwAB3NJPPFbQvNNIscSAszscAD1NeZ+IvEUuvTGGEtHp6N8qHgyn+83t6D86VyZSsO8ReJJNdlNvAWj05TwDwZj6n29B+JrJwsac9KpXU4tYzIwzjgD3rHm1SWYkF/wFY1K3JoldlUqDqvmbOgMqYLbgAO+aZ/aMCHBdMd/mFcwzGQ/Nkr9aVEBwFUAe9csq1TvY61haa31N+TW7Zeflb2DZx+lCa9bqTvXoe1c9IhTOVXFRT4CRuvRiDSVSb+1+RXsKa6HYJrVs3B/MGrMV/bTH5X2/73FcgBwBg5IqNpGRyMkAUKvPvcHhqfTQ7lAGlUkZXP51u3UhSAgYxiuI0e8mlRoyxKLjBPb2rqLU/abYh2J2nAyajEe/BSRNFezm4Mh80oCVJ5rO1Odvs2NxAz0HU1pyo3mNgYzVOW3R8bhuI6Vw9TuRzDOWA/hzUE8jK4BcAenYCta/siu5hznoFHSsW8Ahdd2SzDgdq1hZsiaaRVkmKt15NIr7nwf0qJ2OSSMf0psZAI5OfWt+XQw6l2VlTG1uopMlQwA2ZHBA5/E1X84sQMfd4q2nMfLJEOzMeSahqxRX0jV7zRNSivrGUxzRn6hh3Vh3Br33wv4ns/E+mi4gISdMCeAnJjP9Qexr5yAIbPatTRdXu9E1KO+sJCkq9QfusvdSO4NdkKvI/I5ZQufStFYvhnxLaeJdNFxb/JMnE8BPzRt/UHsa2q7U01dGGwUUUUwCiiigAooooAKjnnitoHmmdUjQbmZjgAU25uobS3kuLiRY4YxuZ2PAFed6p4mOr3fzLJHZIcxR92P95h/IdvrWdSTjFuKuwTjdKTsM8T6je6/IEQNFp6HckR4MhHRn/oO31rn1LAFWXGK6ESxXEeVOR9KzLi2HmEj+VeVTxVTnfPudk8PBxvEz5YUmjZXPBrHn0h1/eI4wOTxzit7y2ycimbJWJQqea6vaRnvuYxjOntsYTWv7kjvt3UGCUwblGFUHPGM1rRQGXfEExzja3oKsrpmU3yMBGq42Zwp+vrXnPEW0Z6fs76o5mEmSIqu1nHHr37U2SB/s21goAORWrNLbTPCiRP5/JIjHQ/yqlMEVpYQTnbkk9h6VrGpfpYTWhTjL+YAGG0etXorb7TfqjA7QNxxVKNQACOgbPPpzW1ohFxeTADogA9ua2j8avsYTbUHbc1La3WNQkSYz2XvWi1ubdFZpcSHkKo6U5DbWco+88mPvDtUE06yPvJxmlVxCekNjOjh3e8y8l/CibpwFVR97NYmpa3EW226lR6mqOq3Ll1RcbMZ681kXE2VBbtwAO9cyjzHW0kWpdSk+Ykkk8YJrOuSXlDHLOBzk9Khkl3SKR69BUTS/vNxb5cc1rGnbVGM5XdhJm3MFC4UDH409E3oRjHfJHSoZJN54HyipoDnBbtWsrpErcWOFt5Izx/FjvVpCuQUTfKeAz8gUzc2PmT5OmB39qYxbaPlbjGMVk7sppLYr3kXl3PLqxfkhBgD2qeIqqEkZ46+lRNExmDEc96lcFY8DGe+Kpu6SM0rFrStau9D1SO+sZNkq8Mp+6691YdxXu/hzxHZeJdNF1anbIvyzQk/NE3ofb0Pevnfac88Vo6Nrd54f1OO9sZAJBw6H7si/3W9v5VvRq8jt0Mpw5tT6PorI8PeIbPxHpq3dqdrD5ZYWPzRt6H+h71r16CaaujmCiiimAVBd3cFlbPcXMixwoMszf560zUtStNJsJb29nWG3iGWZv5D1J9K8w1nXp/EJjuSxjtOsNv6f7TerfyrOdSMLJ9Qs2m10JNd8QTa7c45js0OYoc9f9pvf+VZTNtHApjHYBgfjS4Ljkis6mIjT0Ip0J1dWTW968JwcFO4qaXVE25ER9M5rHmjZJOCSDyaRSoGTmuGapVHzW1O+EakFa5f+3LISdmKnhlB5PWstSN3H5VYRiuCDWco2WhsmPedbaeSVsgNIqs391M84q5c2cDQk7AxwcHJOR61VaTD/ADIsqOMMpHb1/Op768EVmqR/fkXAz0X2FcEk3JWOpWsZttaRw2xugWaZkcCI8AjPGD+Fc8ZJCWd2AzwSea3JphNNBp7ttWMF2KnqetYN7hJCq5IBwK7aN29f6RjU7gZDjI79jWpok3lXLgddoGffrzWWIy+0nrjgVoaUqrekgDkcnPf0rWb90lI6AvubJ55pT83Q02nKMkcd65jROxkaiirPgZzj5iay5o1fJwTxwfSunuLJZ23dD3PrWHdxmNiq9AdufWtYuxL1MgqUGc45qtI4LFj7YAq/Oh6LgsTxUUOmtKxLOOmcA1vGStdmEk72RBF83XkVcQLHjjrTHs44kJL/AD5pYpMR7G5weKmTvqhpNaMtrtSP5hj0zTDyoC45680hHZjj0qAysrbUyx9AKytctstl1AGRz61XedFyTjntVqxt0lgN3dvtjwdq55ODj8BWXMAz5wBnsBRFJtrsRJtJMuWtr9rJlkIjiB/h5Y/4VtNoFjEsly8pcBMrCvHOO5rBs7mS2ZQ7HyyclQetat1rMHk4hYyFhjBGMfWsayq8yUHoXTdNxvIg8P67e6HqC3tmQG6PGT8si91P+Pavd9B16z8Qact3aNg9JIm+9G3of8e9fOaszMSvTNbGga7eeHtSW9gYqcYeM/dkX0P9D2rvpVnTdnscs4cyuj6IorN0PXLPX9OW7tH46PGfvRt6H/PNaVeimmro5tj508YeK9Q8VaofMBis4XZYLcNwuDjcfVj/APqrb0b9/pFs+ATtwT9OK4W4ST7RN8rAb3JOO26u08LXtrHpq27yqJFYkg8ZzXlY+/JddzrwtuazLsqHkEEVEilTirF7qdnFcRwu6hXDZkB4UjsaWNYnjEiSqysMqa4oVGlqjrcU3oyPywTyMmomtfRTj2q2GVOgyaUvkZp80t0Fl1KCxqp5HPep12lcYGKWQLtzsGaQoFQMXGPStFPT3iHFvYQsA4XJUAY9B9am1FRcw2hjO0RhTiT6A8/571SNwG3KqKT0wTgH2qDUdckKqjKAyjHXgVioScvdN+ZJakN5dAyu2Iw/coBisK6lDS8cjPWnTXDXDnAwM/nSeV8vTIrup01BGMp8xLayI0KyKc7RyPerOlzxi/KyHbnBU+tUEiKqyjAVj+dEoaHy5V/hODz2puKd0ieZpJnau6W8e+Rgo9Sai33bWYvlhihtegknfG//AHR1Nc7qjXNxNaFsMjAcdicdDU0MVxqjPc6jK0iQrwp49goHQD6VzxglHmkzWzk7JGpaa5DMximCo38JGealvrfzYPkXJNc7Zx7tRUxxhUDAZLZA/OuxUgp0HFZ4ioqTSS3LjSb1MzT9GjZGllGGBwDngVU1Oe2tMRQsfmGWCtVTULq4tmu7VJGCGUNjPUY4/Cscz5GAMtWlOk5vnk9DFtRFuGYvwGy3QHtTwjK3zdccVGmHdCcls5/+vVuQ7Wx1rok7aGb11Kskz5O04A4pIfN3gRlt7HjFOfBkG4/L/WrGnqrXLSHnaPlyeKmTtElXcrGsrqTseIOigDB9T6Ustvb+WEMQXPXFEa3LvvSInHXsPwq1FYKyCS5kLk87F4xXBKSjrc6+W+ljNTT7SSYDyyQOwPWteDSrSRf3VlGATyzEt+nanSCFIVCxBI8EgD2FC6uixCKIKgUHLN0/Ss51Kkl7txxpwW5n6npVrZWbSRKS5cKSx6fQdqwWADfdPtity/E1xavLuZgcEKRyRmsxE3JgjHNddBtR953Zz1Iq+iNDw1r97ouom5tXGF4kjb7sq56H+h7V6qnxH8PtGpeW4RyAWQxE7T6Z714uB5dxKoPGR0qQhMn5j+ddMK04aR2MJU1LfcR4JYfOcOjDcxCnvzzRb24hmw6Nkjop5qhJITMU3naGY4+prQsL0C+jQqJNpCgHqPU1rUUlcIyjZGq+jR3FyspLIr/M6uen09a3A0EQCoOg4rClt50unmLFgT0GcY/xrUA781wTUna7OiDir6Ehbe+1acCqPg5I9aF0S1v4YPMvSkhXcyE8Fuf8Kr3cNxpOyOWJ3Zvuruzx25ocH0ZSaLDxM/3Tkemajlsbh4iEwr4wDnpVVNQCndMhTHXad1a1veQyqgjlBJGQpPP5VlVdSmrrU0p8knZnI/aZLOQxzoVkHDnuv4VUmxLIXLZB6V12paVb6jh5VYOvG9euPSsK90WWzXdGTIh4GRzmuijWhLyZM6clvqjKVAvA6559qsCMsgI/KmxxlSSfvYycmpJmaGMDI+boAetdDd3YhJJXZBdt9mChWBYjPTpUSCe+Xyyo2HqwGMVYt7TH76cbpD0U9FHv71rwaZLLEJpHKJjKgVMpxgtTeOHctZuyfQpvKkumQwKhNwp2vk8A+oq5Jsjt0h5AZtzc9aiiVU1L7Og+WcZLN2Yf/WpdTjaTzVTdlMAH146VhpdR6bmkWlG63WhQDLFeROqqAhyQelaY8QYKDylY5wcHpXKzl32qCRnhea2dLtkVEaT7iHe7HvjJP8q7Y4aNRpyPPxGK5ItJamnciNpzJOFaVlyB02r6n0FUJdOW5zJFbMR2kLFQfoP8asW8Ru7iGKXImusTzf7Kfwp+X6mtu7eO3jAQbQBwPSoxNeNFqnTSuZ4aE63vVJOxyFrbTNM6uqoyDkZq8ljAzZmlIz6VmyzGO9Eu7aAcZ9qbNfvNwv3R096ylGcnozpUoRWqNGa0sEkATJPuTVm0WOHJhREOfvY3GqsLRm3CTyKs3Vsc8f40SyKqtFESM8ZHasXFtct2aKUV7ySNGOeSeNneTjOBu4z+FWYsbWIyykYHYCqEcf7tExhVGMnqa0bcDZHnnPUe9ctRJbFRbbAMRZSRFcfu25A71lWZVYsmMys3AAFaV3OFDxggHYcZrFtXKQmfLkK2Ao4BJ4FVSjeLFN2kdC6BbL7TIr7WwCSuPpXP3L7JWKkFc8GrWu3E8dtb2e47VX5snqQAP0rEjBYke9a0Kfu8zZlUqa2JWYGYtnrj+VBxk9ab1lIxQzYY8d66TnbM/eqTMxOTuOPzrR0K0jv7x1abYwO7GMlhWJI2ZSDxyTV7TL021wZUZg4GBgAj8a7K0W4vl3OeEldXPRQiKAjDcAMZ9aGhT+E8e9c3Y6/LNIEmKMSMbVGDx3rXjuXZN6oWwOF/xNeTKjOL1PThUi1oZ1xqEml3TTI7tJ0C9v8AP+NXNN8QtPqSrCryRsuWbbk5x05zgD+tYsthqtzcPczBVdjlQsgCqPStnwtfPpd/O19Gkkvl/u2KgnIPr+ddnLFRv1MLu+xpatYu9qbkw7XJySI9oA/DvXD3UvmSsEbBH8Q4wfau11vxXdX2n3MexUUjauB0rhxGE0/zW+8TjHtmrppbkt9GddpGrm4tYULGVokzcPsOTzgY/D+Val5drDpkt3AVkCqSpHT61xGnanJbDNuTG5GCR3qxqd/cXtmE85jHJktjjODjt71jKh75op+6ZqX7NO80x3Ekn8f8K0I/KuJPPUAlRz9awBE7PsKgEHGa1tOXykdOmea2qQSV0VhZN1EpbGjEolmVScBmxWrf3QjiWJDtXGMDvWZp6iW6JIyIxkD1NW5ikEhurgqSBwvYVyVEnJJnpTd2QLYlbYysxEvVcdqqRGSa3lOD8revNKmoSahMQWMcWeo606ydII54ZD+9LZ3f3hV+8k+bcw5ovSOxj3Cqt5Ep9a3Y4sWFwP8ApgR+JNY0sBnkMzHo4GPQHofzrpNLRbm3ZHP/ACzOR9DXrUlaJ8/iZ81S62GXSm219mj++2yPHooUH/Gqut3rtOY14HTFXNULL4oicYMTp6d8GsrU2V9Qk284PWvOrxTxGq6Hfhm/ZIxrkFnw3PQ0+EY2vjgc4qO43G4I49hViOPykAPXHStpaRRm3eTFgDtIWbOAf1q9CuGVi2dxIIqhExDnHc5/Gr1qoeUBuOwwa56htTfQ0UkSNRvYAdakivlVNqKzH2WolgTHC/U+lSyRzQohHQ9CeK4nyvQ6UmtSrdPI4aR0KYHG/r+AFNjWWGwjQtgNKvAHU5qEmW6ulVvlHU88AVNdTbSMnJzjjsO1a2taJF73ZHrkhuLi4mU8IwQe2az7dcpnpitG5UPZ3B6Eyrn8qoxEA4FaU37ljOa9645RmTOOfWmMBuPHf0qcAb8VE27cee9WmYyRzswO9sZPzVc0tM3ID5Abiq4BDE8sxPGegp0Mjo/LbNp+96V6UtVY5Y6M0LbTrmC+4LABjiQjOB61Y1ua4a7WFJT5AHCqePrWcb663l2lLR7uFI4qeO7EsRM0aqA2Qw6fSsHGXNzPU2jKNrI0wf7P0uEW88pkcB5Ofl+mPalk1fdYhgB9oH3Wx3zWdLfRD92JCQBgYpI0WeBnBBwwFTyLeRtzX0iyw811cRneoUnrjpTG+VRu+YZ6Gk2sWyr4z1p/VgnUetGwNN6j7Boxewh1G3eDUifu3aFyokjYqQfXPWqoICKw++DVwnzrvzz0k+8fepluVArGIiTmRSSc8CrltEBGzhwznIyO1Rm2DT+Yz7V9AetWUkiiB2KAP9mplK60OzDUGpc8tEXrWRIrNBHxkZkbuap3L/aZvKLfKTk06ORYoGCbSv1qAMkYJX5mbqx6VjGPvNnQ6buubYiR/sU33QR/OnahKiNHdx5EbrtkApDaiQ73/IcVFdx7rN0QAJxgepraKTkmc1anL2cu3Qq3F/ArB42YHbhlxww/oa1tI1ZIIi7JJJ5mcMgzjnPIrlJ8AbChDd89q3NC0yCVUe5VnDfMFzhVHbPrn0rvjds8KcUlc2P7Uju7uBTFIkykn5xxjHXPrVe6iEscjoSZCM5rcfToEt9sSiFewVefrWOAysyv1HGK48XTlGamd2BnCdNx6nOR5iuNsmd2ck1dCBgT8+adf22X8xQQw6VPBte3V+M45+tRKd0pFRp8snEreVtjLjPXHNW7UAshBAI9agmwIyAMnJx7VHaNk7G9etZtXiVFpSNp5ZCeuVLDOOOajkmXziAmTkBBnpUIZlKpu6kDmpWjSGQOT8x9K5+VI3bbFjg+zxNPIQXfhQD0FUp2eW4UA5yckVNcSl8ckkDIBP5VBAQXLd+gzVRT+JkPsged8zRHIUsCQe5FMAAOMd+tJcLtkDAkkjcaWI9M9TzWiSSujO7bsyYKTJ25FI0Y3Hk9akUchu1LjPOf0qUTPTc5qDcpOMHjn2pp4QBsAE8c1agiMkxK52bcsPWpn077SHaExoMdCcfT+tek5pPU5lB20KsMfnoYgfmXnGOOfSk+yzSuYIVY47Ec4pqI9jI2D823nnpW94VsxcyyXU+9lVgOPXFTOp7OLl0HGHPJRI9P0OZERZYlxKN3zdQoPzH8qZLaJZOZgCiSEjavQc967O4u9MtLaQNFD9oVSgKcHFcPeZmAYKojA6D698965KNaVWTb0R1TpxgtNywoRrQFe4yp9vSo9rbckc1npctbytHISY88c9K0EmDAhegHHNbtOJKkpIiAGR7mr9rDDLuR1BbGRk9qoSDhvXFSWLs14jNwAhomm4mtBLnUX1ZqNAuMADioPsgZwTwAexp/nSO+EC/jUNzfGBtgwTj8qyXPsj1puilzS2HXSFFxGF6Y2kfrmqcEyGXy3+Rs9G/oaVrkkfKxJ75pquswZHjLE8kVfK0tTgrVIyleJoMG+VeTu44qV4kMRQgYIwRWbH9pt3Xy9zx5/wBW55H0NXjdx425KSHjaetZNS0sdmHqwcGp7mTfWDdFbcnbcMke1dDoFhFZ2sbu29n+YkHpVCQq0ZGfu81e0y5hhsN0rbVi6n+lduGnd+8eDmNJQ+A3bqUMhZ2CxqOnoK42/wBXAvMQENEuO3BqxNqbanNhkPkA5jgz9/3c+lY19Ivnkffk6EgYA9gK2rOM1Y5KClB36mulzFdxjacNjO00xInQFIxweQPSsJZJI3Uk4xyMdjXRaM/2tHZjl1689a86rH2cbrY9WlNVXaW5Wa2mXIZctnIGe1QqTHISQQc963n2GYFlzgFRz19vasSdT9pbcMc9PSs4T5tGFWnyO6J3lLBH77hirU042bH+8vftVCZSbbIHQg5qx9mZ3JLbv8KmSj1Gm+hDueVsLznqR6VOFAKoBincRYUDA60vAUlQQfepchpFec4VckDAxnFVg2XB/T2qeZWMbnd+FVkT+8cmrjaxjO/Nc0kxsBLU9EDIpweRmqC8kAtwK1bcA20XX7g/lTgrETlc46G6miD7CQWXbu7ge1Pha5AG1/l9zmnqPkICfMT1NNWbEeI0IbG0jGc16LS7GCvpqE7MzszArkYP1roNN1OW00lYbcAMRnPueprDEUrQ5liIDcDIqeBykag8AdM1lUgpxszWm3F3LKSKPOeTDO64XPOOe1QHBX5375xmnqokmVQw5PWr9hY2zXYN+D9nX5sJ/GfQ+gqW1DVl2ctjm7iXfcNn04qeC4CnryOtdB4mg0CSGO4sSsdyWAeKH7uPfPQ1zc1vhAyeuK0hNTjexk4yi2XDcZQn1FSW7Mijg5bge9Z6B1/iwK3LMxNb75Iw+zggnv2xSn7qNaUnJ76jWuWghLsnOOBWc07SMWcHnnNdhpEFlcPI0rZTy2YrIMlSPfvWS8EW+RRgJj5QR09v/r1jGrG7VjefPNJX0MUNhgynj3rQikEgD9O2Kpywct8wwvVR3FFs5VipJGO1ayjdXMac7SsapcGEjPIOaf5KTQgygMxH5VBbyea+zHBz/KryJ8rexxXNJ8p6uFipxd9UZLeZE3lhiVJyM9aralcHAQfKrtyPcVuzQo4Ax06GsW+tt8a5IDAkCtack3c5cXQcItdCvDPIkZjjHzseTVu6t4rFB5hEl3IM47Rg9/rTLdUtozKg3yAcOw4B9hVVd8sxeQmSRySe5Jrp6HkbshkzkZ/u1oaRP5M53jKYq3Z+H2nR7i6l8tByVHOAPU0JDb+X55Vo7MH5WPDyfT0+tRUp3jZlQrKMrroWZrwKQScg8f8A1xVHzS8m8cnPepBeRXD7VsIyM8EuwP55q0/2c2DNBC0bhhnJzx7GsFRSRvLEOT1RX8uWSPYOPelSO4VgomyPcU9JgeBwR15qykY25Bbd2wa55Sa3OhJPVEM0UhTeZRx26VTWZgSpxx/FWxcpHHZKxBd5M4QH071hlgFznn0pU3zImr7r0LvkSSxFzOu0LuwBnPtUH2Z3VmLqAOw71Np84+ZJB8p6duam8ofvE+6A2APalzOLsFlJXKkQBwK3rWMfY4P+ua/yrEETAkqCFzxmulsYgdPtj6xL/IVtBnNNNHCEJtyXJJ9BT0wqBRnGazJBNIxxuINWYZHgj2SrkZ4x1Fd9hU5q5o+Z5bBlJyOSSBVaS5UsQpjYepapOSM5IH0qtHppeTO793n0xU2XU3m5PRCrKQwPmhSPQ5qxuWUDfdN79TTJLONQV25/GqzWXz8Dj60rJmbjKO6LVzbQmEbJtzAg42mrOnzWqTFbsxeXsPEmcH8qzVsyRxIOe3NTxaNczhjCBJtHO1hUy5bWlISbvdI1be20OZmTzJt/YK4I/CnvbW9soaN3eJ+Mkf55rChtpI7lfMwArc81pNdq0jEJtQ8kZOCe1RKDvo2zSDXVamnbXKQRSKy72cqMBsAqOv64qpczTT7YlQJHngen496zLiaVZfkO1MAj1p4lkdCGlVRjvSVO2pTqX0HBGV5QSG3Lgc+lQxuxGMEAdP8ACmMxTbg5PbHSnoxbqTn61rrYycU2aOnZlmDcgICTWlb9JJW6E8VnaeGCz56ACrbSZGwcKK5Zq7aPbwtoUk35/wCQ6Wbcdqjk9KytQy+I0OWzjirzkxg4++ePpVf+zriR/OBVBtx83aqjyx1Zhi5SlHl6kkFtEwEbvgDnGeDWla2kMZD+XuUc88LWAVMTlc7vTApeZMhmYr6FjiupVUlseNLDyfU09Z1VZojZwSIdxw5BwAPSqotLl0SSWRZYUwoEbZC+1QRwxs6qIwfX6Vv2UULQyRbRGZAAQox0rP2qclF9SnQcIXXQbDYWFsiOd0jsAyqeo+tU9Rd5cRhQkZO4qg/nVq6mhsSURTJL3yf51R/tCX5vljO45PFVWmoq0dzOjTcneWw2KFYxkEksPSpPOeN8r096i82djkJx7CkMVxJ0Q1xS1d2d0dFZGlFqEZhKMMHGPasy7hwdyx4TP3j3+lPFpNwCUH1qbyAQBIY2IHHXiskowd0XK842ZnhmicP3ByKvrIxxJjO8ZOPWqksHlnGQVzSxzFAVwcZrRrmMYtxdmaBkJUKVP1rptPhzptqef9Sn8hXGNO/BHTuK7zS1J0iyOP8Algnf/ZFVShYitK9jlPFPg+48M6h5U3z2smfJnA4ceh9CPSuSKIrnOSB0NfU2r6TZ63pstjfReZDIPxU9iD2Ir578V+D7vwxqPk3G6W2kJME6jhx6H0I7ivSlC2pz3uYkVzsXaRz2JFXEwIssc5qgWESHIBycDFOMmQFyRn3rOx0Qq23LQ8sg4z+dMP3iVyfUCoLcMJeCcc5qy4J6cY5FI0UuaI5CFXC8565qTzAFOCQ31qLyw3s3Yiq8M7Kc5z9e1S4kN8rsyzIFij3MQM9u5qkZPMcg7gD+dOdnZyznNPTdG3AC/hk01oQ5X2CRB93bzxg+gpiwE/xH8amETSEnax+tTxW2/wBTzScrBuyoIkQHe7N9BUsaDP7sEGrSxsu/gBRxuxmoGbYeDkn2qea5SVi/FIsdqyscOxqaLiMP94ngD3rFlnKuO1aelT+YMPxtJOaylFqNz0KOJ+y+i0Nu3tYYbczzcvjr6fSsbUr95Dt+7GOFFWrq9MoC5+ROgrOCeawmfp0QevvWNKDvzTJlzTdolJmbftb5frUiKdvsKfcBWlGeualf5Yh2GK6WzncbNjrLG9ielaayAnHQY7Vk2hAyCevIqyCfMAzXPUjdlRdkR3RKS/ezkknNIiiRlAOGNS3Sqz9s4GKhiUq+c8imnoK1pWNNGEJ8u4XGDgOv3f8A61WYo1d2PDIT1FIrAjLc55qJVZXYwHZzyD90/UVxvU6FoF6EVAY02ndjgmsqXLtznrWtNcIYRFPHskznnofoaqSIvPOAK0pOy1IqRvsWLDR4r2HzGmcN02njP41TlW0SUxoGYKcFh/8AXrQs5nW3QA9D2qpYaddapqS2dpCZJZHOFH16n0HvTp88pu7M6iikrIl021lvL+K0s7UzyynCr/X2Hqa9ds/CT29jbwvdR7441RsISMgYq54Y8LWvh2zwoEl24xLNj/x0eg/nW/XqUcMoq8tziqVLuy2CqGsaPZa5psthfReZDIPxU9mB7EVforrMj5v8VeErnwvqJgmUyQvkw3AHDj+h9RWBlV5Iz2r6f1nRrLXtNksL6LfE/Qj7yHswPY14rrng8eG73ypkeYMSY5TgK4/xrmq+5qaQTk7I46OZEU7yBn1Pap45PtKlYCpYDPPfmtOfw+t3cC4A2oSMoSADWTcadJYNJOzrEwPyKDkgZ/SsY1IS0T1NZKrBeQjzZgdtyhhkEckrUEU1vFbF3jd5nPAHAAxwfzqOS5a4kDFVD9wOBUbyD5QMk+uMYrSxk5tu7JTcym0EHlrhiDk9SatxyNBDuljAcH+Lv9Ko78p8qj5R175q1FbExJMVfpyaUkuoRu9i2l80kA2cZ644qEXTLk7iWzVVzF9pHlu/l7csB6+lN8uVwDjFJQSLUmWZLyRl27uOpqu0jN3JFLHbEkl8nFWVj2pk4HpxRotitWVUhaRstn/GteJDaWqqfvvyfYVFbW5eQO/3B29aluZgz7j34rOb5nY2pxsrkb75cE5EWf8Avo1K7+UqA84GB7Vc8uNoVUHjaMYqhf8AngIilSp6cc1nGXM7Gz5oLmRUV2e4wSCCw/Crd8NhCA1WhtpftaBhzkHAp9y5kckcHPFaNXkjBP3XcnghLKoIwPWppbd1AMb5PvVAXO5eQ2fQU5Z5RjarfU1m4ybK542JjDOG3swb8aduMeBJGQR0Oaj8+c9f1FPMjPzI270BpNMV10NWO4t5EADYYDv3pkbhpGCkdu9ZIkAft+FTJKUfzEYA+tYOja9jT2t9zauYz5DF8MpFZcmUj2qO+eaG1GRk2uQUA6AYqTT7W51m+is7KJpJpDwo6D1JPYUU6UlowqVIs1dBsJdSuorWFC7sc4Hp3NeueGPC9r4dtW2gSXcvMs2OvsPQUeF/DFv4csAikS3Tj97Njr7D0Fb1elh8MqbcnuzjrVufRbBRRRXWYBRRRQAVS1TSrXWLJrW7jDKeVbujdiPertFJpPRjTad0eAeLbDVNA1BrOYFYm5jnQcSL7Ht7iuUZ2L7j84HQMe9fTGuaHZeINNksb2PKNyrj7yN2IPrXz34q8MX/AIc1R7a4XMZ5ikH3ZF9R/h2rmdFQ+EuU5T1kc/zHIec5yMUrzMyhQi+WrZxUZLFgpJGO2KQjCleSScZ7U7EF1mjlttyKse4ndt6VNY3TGMIcbMfSqi27bdgJx6YqysZSPDfKOnNZtK1jWF1qTzfZyceWPopAzUZbO0DAUdBTBDleGU4PODUiIoBLcY5x70rJIu43eM4JANOPUAj9aiMQWTcxyTT1yV3YAoBNs0IJlkjELfLzwaZeQhXLIcharKegzVgyYADghcYzWVrPQ3i7qzK8MkkLnDMR7VYEpeQFs8c81HJHbmNikzDvxxVAIxz+8bHvVWT1FKThoaZdItzsw+deDVJ5Ebb83PaowSn8Qx700orPyQfrTUbEOdy3CFwQZCM84xTicYIkGKhSJgvB4+lTLGcfeHr0qXYaDeCcGT9KVmXHVj9FppcqdqsSfao3eRupNKwN2Fzz91vxpQ/GAvH1qIZPfP41oaXpV5q9/FZWURkmkOAB0A7knsB607EXDTNMvNYvorO0hMk0hwAO3uT2HvXvHhPwpaeGNPEaYlu5B++nx94+g9FFL4U8KWnhiw2JiW7kH76cjlvYei10FdlKly6vcwnO4UUUVsQFFFFABRRRQAUUUUAFZmvaDZeIdMeyvUyDykg+9G3qP881p0UAfMXinw7feG9Xa1uk4PMUoHyyL6j/AA7VkKQ8mMY2mvp7xF4esvEmmPZXif7UcoHzRt6j/DvXz1r/AIYvvDuqPZ3igd0lA+WRfUf54rGcbFLVmcZzECyk56VWdpZlyecHk1P9lOcscimSF13Rx8JwWGO9ZK3Qp3Ik3Lk5wfSpkaRuQ2fSohE7FmGdvrT4pfLH3fm7U2JXLBWTYdxGAM01SR1xio0R5yZCcelWYodj5ByR69KjY0V2R5YsG6VZWRhFhzmicuDkjPue9UxPIko5+XPQ1NuYu/KSsVxnOfpTSSc7VqV03HcpUe1BIBHmMCTxwMUCsRLAJcB2I5/SleKNFZc854IFSP8Au23KahklaRc5x7UasNh6SCNTyfzpyy99tVQT1xzTgWyCT17U3ELlsTLgcYpjEMfSoQTV/R9Jvda1GOxsYjJLJ+SjuSewqVHXQHIXSdMvNZ1KKxsYTJM5wPQDuSewFe++FPClp4Y0/wAqPEt1IB505HLH0Hoo9KPCnhSz8L6cIYsSXLgGacjlj6D0A9K6CuunTUdXuYylcKKKK1ICiiigAooooAKKKKACiiigAooooAKyfEPh6y8R6a1pdrgjmKUD5o29R/Ud61qKAPm7W9DvtA1Z7K+TBHKOPuyL2IrGkgZCQDu38g96+mdWsbS8ij+1WsE+1vl82MNjjtmsg6JpPP8AxK7L/wAB0/wrndOz0NL3Wp8+xkgbDEMetMlRmcHaAMc19ANoek8/8Suy/wDAdP8ACopNE0nj/iWWX/gOn+FLk1A8E3MF27cAHNTpc7WBK/jXtkmi6V/0DLL/AL8L/hUTaLpX/QMsv+/C/wCFHImNSaPHjIr5BAwwyDVCVOSV9a9sOjaXj/kG2f8A34X/AApp0XSuP+JZZ/8Afhf8KFTSG5XPFVZ8Cp1KH7ykmvX20bSx/wAw2z/78L/hTDpGmDpp1p/34X/ChwQKR5Gqqu4gHJqIqee1evNpOm/9A+/wDPFf8ACo20nTcf8g+1/wC/K/4UuQfMeRqCoJPU9KesZOM16m2ladj/AI8LX/vyv+FIdL0//nwtf+/K/wCFDgK559o+iXmtajFY2MJklfueAo7sT2Fe++FvCtl4X04QQAPcOB505HLn+g9BVLwVaW1vb3bQW8UTGRQSiBSRj2rq61pQS1Ik+gUUUVqQFFFFABRRRQAUUUUAf//Z&#;],
 &#;texts&#;: [&#;\n\nThe theme of Arcadian shepherds discovering a tomb originated in painting with Poussin in the&#;,
  &#;Flemish, \n\n20\n\nWhen Italian artists of the Renaissance came into contact with paintings from the north, they&#;]}

显示检索到的图像

for images in response[&#;context&#;][&#;images&#;]:
  plt_img_base64(images)

以上,利用多模态 LLM 和 Langchain 以及unstructured,成功地从非结构化数据中实现了 RAG。不仅利用了文档中嵌入的图像信息,还利用了文本信息。

参考原文:

[1] Plaban Nayak:Multimodal RAG using Langchain Expression Language And GPT4-Vision

相关推荐

我的抗战演员表全部_我的抗战演员表全部名单

霍啸林,是抗战剧勇敢的抗战中的角色。由男演员杨志刚饰演。他曾经是一个不学无术的少爷。后来在父亲霍绍昌被赵金虎杀后才懂得的世间的冷暖。后来选择了抗日救国,最后被日本侵略者砍下脑袋。勇者的抗战霍啸林大结局...

虐到肝疼的超级虐文短篇现代言情

《送你一枝野百合》作者:罪加罪从校园到都市,双向暗恋,女追男+追妻火葬场,这本真的绝,甜虐交织,推拉一绝,今年看过的最好看的文。罪加罪真的好厉害,讲故事的能力很强。作者罪加罪真的好厉害,又会写甜,又会...

海洋天堂观后感_海洋天堂观后感一千字

海洋天堂结局:是大福像从前趴在父亲背上一样,伏在海龟的身上,和他一起游。他费尽心力地教大福自己坐公交车去海洋馆,在海洋馆擦地。为了不让大福感到孤独,他不惜拖着病重的身体,背着自制的龟壳扮成海龟,陪着大...

无敌战神林北_无敌战神林北1130

五年前,被陷害入狱!五年后,他荣耀归来,天下权势,尽握手中!我所失去的,终会千百倍的拿回来!     此一刻,天空之城,整个议事大厅,鸦雀无声…&nb...

虫儿飞原唱_虫儿飞原唱郑伊健

原唱郑伊健主唱,童声伴唱歌曲歌词:黑黑的天空低垂,亮亮的繁星相随,虫儿飞,虫儿飞,你在思念谁。天上的星星流泪,地上的玫瑰枯萎,冷风吹,冷风吹,只要有你陪,虫儿飞花儿睡,一双又一对才美,不怕天黑,只怕心...

黑莓视频_黑莓视频素材

看视频没问题!只是他是四方屏幕,不能满屏观看,而且屏幕又小!这个黑莓打电话发信息上上网还是可以的。看视频就一般般啦!

最霸气的十首诗_笛子最霸气的十首诗

一生必读的十首霸气古诗词有:《观沧海》、《赤壁》、《过零丁洋》、《夏日绝句》、《石灰吟》、《满江红》、《赴戍登程口占示家人·其二》、《从军行》、《雁门太守行》和《无题·龙卧千江水自流》。这些诗词或表达...

你是我藏不住的甜_你是我藏不住的甜最新章节

第五十四章!小说甜而不腻,有些接地气,作者文笔流畅,句句写进人心,情节套路新颖,不是烂大街的剧情,在读的时候,最大的体验就是感觉书里出现的那些人好像我们身边也有。《偷偷藏不住》刚开始看到书名的时候,我...

神级奶爸免费阅读全文_神级奶爸格格党

尚不清楚。因为张汉是一个虚构角色,他的结局取决于他的作者和故事情节的发展。如果现有的小说或影视作品已经完成,那么可以据此判断他的结局;如果还有未完成的作品,那么他的结局还不确定。需要等待后续的剧情发展...

哆啦a梦主题曲歌词_哆啦a梦主题曲歌词罗马音

1:“?”是的,我给你讲一下哆啦A梦主题曲的国语版歌词。1,哆啦A梦主题曲的国语版歌词是这样的:小小的希望被星星守护夜空之下未来是创造这世界的奇迹用画笔绘出期待与创意将...

十大最强机械怪兽_十大最强机械怪兽实力排行

金谷桥,艾雷王,艾斯杀手,机械哥莫拉,我现在只想起来这些1嘎拉蒙不是机器怪兽。2嘎拉蒙是一个虚构的角色,不是真实存在的机器怪兽。他是一只来自外太空的生物,具有超能力和变形能力。3嘎拉蒙在动画片和...

绝密押运40集免费观看_电视剧绝密押运全集

是假象的卧底,其实都是蝴蝶帮干的,武警没有卧底只是赵野是警察安在银行的卧底而已私家车恶意插队是在第二集。绝密押运第二集剧情:陶涛到九中队报到,被分配到警卫连。九中队军容整齐,军纪严明,营区内布满...

海之边夜未增减板全季_海之边境

大海是有边的。虽然说大海看起来无边无际,但它总是有尽头的。太平洋是最宽广的,但它的东边是美洲,西边是亚洲,北边是白领海峡,南边一直到南极洲,它也是有头的。其他有印度洋,北冰洋,大西洋,它们也都是有尽头...

夏至桑旗全文免费阅读_夏至桑旗免费阅读目录

《初婚有错》女主夏至,男主桑棋。作者芭了芭蕉。简介:年轻貌美的女记者忽然怀孕了,孩子不是老公的。当做金丝鸟被圈养,却不知道对方是谁;有一天晚上,一个人爬上了她的床,“怎么是你”桑旗开了一家绣坊,夏至辞...

权力的游戏第7集完整版_权力的游戏第1集完整版

1、史塔克家族的北境王国2、霍尔家族的河屿王国(河间地+铁群岛)3、艾林家族的山谷王国4、杜兰登家族的风暴地风暴王国5、兰尼斯特家族的西镜凯岩王国6、园丁家族的河湾地河湾王国7、纳梅洛斯·马泰尔家族的...