百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

时间序列如何分析周期性?(时间序列如何分析周期性问题)

cac55 2024-09-21 13:28 26 浏览 0 评论

从信号处理角度进行分析

简单的时间序列直接做各种谱分析(频谱,包络谱,平方包络谱,功率谱,倒谱等等)

比如一些简单的旋转机械振动时间序列信号

如果频谱不好分析,那可以分析如下图所示的时间序列的时频谱

给个简单的模拟信号的例子

t = 0:1/2000:1-1/2000;
dt = 1/2000;
x1 = sin(50*pi*t).*exp(-50*pi*(t-0.2).^2);
x2 = sin(50*pi*t).*exp(-100*pi*(t-0.5).^2);
x3 = 2*cos(140*pi*t).*exp(-50*pi*(t-0.2).^2);
x4 = 2*sin(140*pi*t).*exp(-80*pi*(t-0.8).^2);
x = x1+x2+x3+x4;
figure;
plot(t,x)
title('Superimposed Signal')

其连续小波变换时频谱如下

一个模拟的轴承内圈故障振动信号,带有明显的周期性

相应的频谱如下,红色虚线代表故障特征频率及相应的倍频

包络谱如下

看一下相应的CWT时频谱,很明显能看出冲击性

还可以试试小波相干与交叉小波分析

小波相干、交叉小波,可以很好地反映两个不同时间序列变化之间的“相关性”。小波相干分析,一般反映序列间周期性“变化趋势”的一致性,但不直接反映变化周期的强度关系;交叉小波分析,一般反映序列间“共有周期”的强度。

此外,如果时频谱线能量发散,时频脊线模糊,还可以试试同步压缩之类的算法

时间序列信号处理系列-基于Python的同步压缩变换 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/554189692

当时间序列信号中噪声较大时,为了有利于周期性分析,不可避免地要进行降噪前处理

比如K-SVD降噪

样条框架降噪

Morlet小波降噪

当待分析的时间序列过于复杂时,那可能要引入模态分解(多分辨分析),比如小波分解,经验模态分解及其变体,变分模态分解,经验小波变换,局部均值分解,辛几何模态分解,各种各样的自适应分解算法

基于小波脊线的时间序列分解

好多同学都对各种模态分解方法的时间序列处理感兴趣,那就随便说一下

实际上,时间序列通常由多个具有物理意义的分量组成,在很多时候,为了更容易的研究信号,我们希望在与原始数据相同的时间尺度上单独研究这些分量中的一个或多个,理想情况下,我们希望这些经MRA分解到的多个分量在物理上是有意义的,可容易解释的。多分辨率分析MRA通常与小波或小波包相关联,但诸如经验模态分解EMD,变分模态分解VMD等模态分解方法也可以构成MRA。

先给一个简单的合成信号,信号以1000Hz的频率采样1秒钟。

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
comp1 = cos(2*pi*200*t).*(t>0.7);
comp2 = cos(2*pi*60*t).*(t>=0.1 & t<0.3);
trend = sin(2*pi*1/2*t);
rng default
wgnNoise = 0.4*randn(size(t));
x = comp1+comp2+trend+wgnNoise;
plot(t,x)
xlabel('Seconds')
ylabel('Amplitude')
title('Synthetic Signal')

该信号由3个主要分量组成:频率为 60Hz的时间局部振荡分量、频率为 200 Hz的时间局部振荡分量和趋势项分量。趋势项分量为正弦曲线,频率为0.5Hz。60Hz的振荡分量发生在 0.1到 0.3 秒之间,而 200Hz的振荡分量发生在 0.7 到 1 秒之间。

但这些分量从时域波形中无法分辨,因此进行频域变换。

xdft = fft(x);
N = numel(x);
xdft = xdft(1:numel(xdft)/2+1);
freq = 0:Fs/N:Fs/2;
plot(freq,20*log10(abs(xdft)))
xlabel('Cycles/second')
ylabel('dB')
grid on

从频率中可以更容易地辨别振荡分量的频率,但时间局部性信号却丢失。为了同时定位时间和频率信息,使用连续小波变换进行分析。

从CWT时频谱图中可以看出60Hz和200Hz分量的时间范围,但没有发现趋势项分量。为了分离出信号的分量并单独进行分析,接下来使用多分辨分析,直接在时域中进行相关操作。

多分辨分析通过将信号分成不同分辨率的分量进而缩小分析范围,而提取不同分辨率的信号分量相当于分解数据在不同时间尺度上的变化,或等效地在不同频带上进行分析。首先,采用离散小波变换的变体最大重叠离散小波变换对信号进行多分辨分析,分解层数为8。关于最大重叠离散小波变换的相关内容,请查看如下文献。

最大重叠离散小波变换的8层多分辨分析分解如下:

如果从上向下看,会看到所分解的分量变得越来越平滑,即分量频率越来越低。回想一下,原始信号包含3个主要分量,一个 200 Hz 的高频振荡成分、一个 60 Hz 的低频振荡成分和一个趋势成分,它们都被加性噪声破坏了。

从D2 图中可以看出时间局部化的高频分量被分解出来,而下面的两个图包含较低频率的振荡分量,这是多分辨率分析的一个重要方面,最后S8子图中包含了趋势项分量。

除了小波多分辨分析,经验模态分解 (EMD) 是一种所谓的数据自适应多分辨技术。 EMD 在不使用固定基函数的情况下递归地从数据中提取不同的分辨率成分,关于EMD相关文献浩如烟海,不做赘述了。EMD的多分辨分析分解如下所示:

虽然MRA分解分量的数目不同,但 EMD MRA和小波 MRA会产生相似的信号波形,在 EMD MRA分解中,高频振荡成分位于第1个本征模态函数中 (IMF1),低频振荡成分主要位于IMF2和IMF3中,IMF6 中的趋势项分量与小波技术提取的趋势分量非常相似。

自适应多分辨分析的另一种技术是变分模态分解 (VMD),VMD 从信号中提取固有模式函数或振荡模式,并不使用固定基函数进行分析。EMD在时域上递归,以逐步提取低频IMF分量,而VMD 首先识别频域中的信号峰值并同时提取所有模式,相关文献如下:

Dragomiretskiy, Konstantin, and Dominique Zosso. “Variational Mode Decomposition.” IEEE Transactions on Signal Processing 62, no. 3 (February 2014): 531–44. https://doi.org/10.1109/TSP.2013.2288675.

VMD的多分辨分析分解如下所示:

由上图可知,与小波和EMD类似,VMD将3个分量基本分离了出来。

还有一种数据自适应多分辨分析技术:经验小波变换 (EWT) ,EWT根据分析信号的频率构造 Meye小波进而进行自适应小波,之前写过EWT相关的内容:

经验小波变换在信号处理及轴承故障诊断中的应用 - 哥廷根数学学派的文章 - 知乎https://zhuanlan.zhihu.com/p/53

EWT的多分辨分析分解如下所示:

与之前的EMD和小波MRA类似,EWT分解出了相关的振荡分量,用于执行分析的滤波器及其通带信息如下:

下面考虑一段神户地震信号,源于1995 年 1 月 16 日在澳大利亚霍巴特的塔斯马尼亚大学记录,从 20:56:51 (GMT) 开始,以 1 秒的间隔持续 51分钟。

figure
plot(T,kobe)
title('Kobe Earthquake Seismograph')
ylabel('Vertical Acceleration (nm/s^2)')
xlabel('Time')
axis tight
grid on

以最大重叠离散小波变换为例,其8层MRA分解如下:

从D4和D5子图中可以看出初级与延迟次级波分量,地震波中的分量以不同的速度传播,初级波比次级(剪切)波传播的更快。

将信号分解为若干分量的目的通常是去除某些分量以减轻对信号分析的影响,MRA技术的关键是重建原始信号的能力,如下:

每种方法的最大重建误差约为10^(-12) 或更小,表明它们可以完美地对信号进行重建。在很多研究中我们对趋势项不感兴趣,由于趋势项一般位于最后一个 MRA 分解分量中,因此只需将该分量去除,然后进行重建。

此外,再删除第1个MRA分解分量(看起来主要是噪声)

在前面我们将趋势项删除,然而在许多应用中,趋势项可能是我们的主要研究部分,因此可视化几种MRA方法所提取的趋势项分量。

根据以上的分析,小波MRA技术可以更平滑且最准确地提取趋势项,EMD提取了一个平滑的趋势项,但它相对于真实趋势幅度发生了偏移,而 VMD似乎比小波和EMD更偏向于提取振荡分量。

在前面的示例中,强调了多分辨分析在检测数据中的振荡分量和总体趋势中的作用,然而MRA还可以定位和检测信号中的瞬态成分。为了说明这一点,以1947年第一季度至 2011 年第四季度美国实际国内生产总值 (GDP) 数据,垂直的黑线标志着“大缓和”的开始,标志着从 1980 年代中期开始,美国宏观经济波动性减弱的时期,很难从原始数据中辨别出来。

相关推荐

Mac电脑强制删除任何软件方法-含自启动应用

对于打工者来说,进入企业上班使用的电脑大概率是会被监控起来,比如各种流行的数据防泄漏DLP,奇安信天擎,甚至360安全卫士,这些安全软件你想卸载是非常困难的,甚至卸载后它自己又安装回来了,并且还在你不...

Linux基础知识 | 文件与目录大全讲解

1.linux文件权限与目录配置1.文件属性Linux一般将文件可存取的身份分为三个类别,分别是owner/group/others,且三种身份各read/write/execute等权限文...

文件保护不妥协:2025 年 10 款顶级加密工具推荐

数据安全无小事,2025年这10款加密工具凭借独特功能脱颖而出,从个人到企业场景全覆盖,第一款为Ping32,其余为国外英文软件。1.Ping32企业级加密核心工具,支持200+文件格...

省心省力 一个软件搞定系统维护_省心安装在哪里能找到

◆系统类似于我们居住的房间,需要经常打理才能保持清洁、高效。虽然它本身也自带一些清理和优化的工具,但借助于好用的第三方工具来执行这方面的任务,会更让人省心省力。下面笔者就为大家介绍一款集多项功能于一身...

JAVA程序员常用的几个工具类_java程序员一般用什么软件写程序

好的工具做起事来常常事半功倍,下面介绍几个开发中常用到的工具类,收藏一下,也许后面真的会用到。字符串处理:org.apache.commons.lang.StringUtilsisBlank(Char...

手工解决Windows10的若干难题_windows10系统卡顿怎么解决

【电脑报在线】很多朋友已经开始使用Win10,估计还只是测试版本的原因,使用过程中难免会出现一些问题,这里介绍解决一些解决难题的技巧。技巧1:让ProjectSpartan“重归正途”从10074...

System32文件夹千万不能删除,看完这篇你就知道为什么了

C:\Windows\System32目录是Windows操作系统的关键部分,重要的系统文件存储在该目录中。网上的一些恶作剧者可能会告诉你删除它,但你不应该尝试去操作,如果你尝试的话,我们会告诉你会发...

Windows.old 文件夹:系统备份的解析与安全删除指南

Windows.old是Windows系统升级(如Win10升Win11)或重装时,系统自动在C盘创建的备份文件夹,其核心作用是保留旧系统的文件、程序与配置,为“回退旧系统”提供保...

遇到疑难杂症?Windows 10回收站问题巧解决

回收站是Windows10的一个重要组件。然而,我们在使用过程中,可能会遇到一些问题。例如,不论回收站里有没有文件,都显示同一个图标,让人无法判别回收站的空和满的真实情况;没有了像Windows7...

卸载软件怎么彻底删掉?简单几个步骤彻底卸载,电脑小白看过来

日常工作学习生活中,我们需要在安装一些软件程序,但随着软件的更新迭代速度,很多时候我们需要重新下载安装新的程序,这时就需要将旧的一些软件程序进行卸载。但是卸载软件虽然很简单,但是很多小伙伴们表示卸载不...

用不上就删!如何完全卸载OneDrive?

作为Windows10自带的云盘,OneDrive为资料的自动备份和同步提供了方便。然而,从隐私或其他方面考虑,有些人不愿意使用OneDrive。但Windows10本身不提供直接卸载OneDri...

【Linux知识】Linux下快速删除大量文件/文件夹方法

在Linux下,如果需要快速删除大量文件或文件夹,可以使用如下方法:使用rm命令删除文件:可以使用rm命令删除文件,例如:rm-rf/path/to/directory/*这个命令会递...

清理系统不用第三方工具_清理系统垃圾用什么软件

清理优化系统一定要借助于优化工具吗?其实,手动优化系统也没有那么神秘,掌握了方法和技巧,系统清理也是一件简单和随心的事。一方面要为每一个可能产生累赘的文件找到清理的方法,另一方面要寻找能够提高工作效率...

系统小技巧:软件卸载不了?这里办法多

在正常情况下,我们都是通过软件程序组中的卸载图标,或利用控制面板中的“程序和功能”模块来卸载软件的。但有时,我们也会发现利用卸载图标无法卸载软件或者卸载图标干脆丢失找不到了,甚至控制面板中卸载软件的功...

麒麟系统无法删除文件夹_麒麟系统删除文件权限不够

删除文件夹方法例:sudorm-rf文件夹名称。删除文件方法例:sudorm-r文件名包括扩展名。如果没有权限,给文件夹加一下权限再删。加最高权限chmod775文件名加可执行权限...

取消回复欢迎 发表评论: